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Preface

Classical mechanics is known for its ability to describe the dynamics of macroscop-
ic bodies. Their behavior in the course of time is usually represented by classical
trajectories in the real three-dimensional space or in the so-called phase space de-
fined by characteristic coordinates and momenta, which together determine the
degrees of freedom of the body under consideration. For the description of the dy-
namics of a microscopic system, however, quantum mechanics should be used. In
this case, the system dynamics is qualified by the time evolution of a complex quan-
tity, the wavefunction, which characterizes the maximum knowledge we can obtain
about the quantum system. In terms of the quantum mechanical description, coor-
dinates and momenta cannot be determined simultaneously. Their values should
satisfy the Heisenberg uncertainty principle. At the interface between the classi-
cal world in which we live and the world of microscopic systems, this type of de-
scription is inherently probabilistic. This constitutes the fundamental differences
between classical and quantum descriptions of the system dynamics. In principle,
however, both classical and quantum mechanics describe a reversible behavior of
an isolated system in the course of time.

Irreversibility of time evolution is a property found in the dynamics of open sys-
tems. No realistic system is isolated; it is always subjected to coupling to its en-
vironment, which in most cases cannot be considered as a negligible factor. The
theory of open quantum systems plays a major role in determining the dynamics
and relaxation of excitations induced by an external perturbation. A typical external
perturbation is caused by the interaction of a system with an electromagnetic field.
In resonance conditions, when the characteristic transition frequencies of the sys-
tem match the frequencies of the electromagnetic field, the energy is transferred
from the field to the system and the system becomes excited. The study of the re-
sponse of material systems to various types of external excitation conditions is the
main objective of spectroscopy. Spectroscopy, in general, is an experimental tool to
monitor the features and properties of the system based on the measurement of its
response. More complicated spectroscopic experiments study the response which
mirrors the dynamics of excitation and its relaxation.

Together with the widely used conventional spectroscopic approaches, two-
dimensional coherent spectroscopic methods were developed recently, and they
have been applied for studies of the excitation dynamics in various molecular
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Preface

systems, such as photosynthetic pigment—protein complexes, molecular aggre-
gates, and polymers. Despite the complexity of the temporal evolution of the
two-dimensional spectra, some of these spectra demonstrate the presence of
vibrational and electronic coherence on the subpicosecond timescale and even
picosecond timescale. Such observations demonstrate the interplay between the
coherent behavior of the system, which might be considered in terms of conven-
tional quantum mechanics, and the irreversibility of the excitation dynamics due
to the interaction of the system with its environment.

From the general point of view, quantum mechanics is the basic approach for
considering various phenomena in molecular systems. However, a typical descrip-
tion must be based on a simplified model, where specific degrees of freedom are
taken into consideration, and the rest of them are attributed to an environment or
bath. This is the usual approach used for open quantum systems. Thus, complexity
of the molecular system caused by some amount of interacting molecules has to be
specifically taken into account by describing the quantum behavior of the system.
For this purpose the concept of excitons is usually invoked.

As can be anticipated, this area of research covers a very broad range of fields
in physics and chemistry. Having this in mind, we have divided this book into two
parts. Part One, being more general, describes the basic principles and theoretical
approaches which are necessary to describe the excitation dynamics and relaxation
in quantum systems interacting with the environment. These theoretical approach-
es are then used for the description of spectroscopic observables in Part Two.

Consequently, we have many different readers of this book in mind. First of all,
the book addresses undergraduate and graduate students in theoretical physics
and chemistry, molecular chemical physics, quantum optics and spectroscopy. For
this purpose the basic principles of classical physics, quantum mechanics, statisti-
cal physics, and stochastic processes are presented in Part One. Special attention
is paid to the interface of classical and quantum physics. This includes discus-
sion on the decoherence and entanglement problems, the projection operator, and
stochastic classical and quantum problems. These processes are especially relevant
in small molecular clusters, often serving as primary natural functioning devices.
Therefore, the adiabatic description of molecules, the concept of Frenkel and Wan-
nier—-Mott excitons, charge-transfer excitons, and problems of exciton self-trapping
and trapping are also presented. This knowledge helps understand other chapters
in this book, especially in Part Two, which is more geared toward graduate students
and professionals who are interested in spectroscopy. Since different approaches to
the problem are widely used to describe the problem of coherence, various meth-
ods used for the description are also discussed. Possible modern approaches for
observation of the processes determining the excitation dynamics and relaxation in
molecular systems are discussed in Part Two, which is mainly devoted to the theo-
retical description of the spectroscopic observations. For this purpose the response
function formalism is introduced. Various spectroscopic methods are discussed,
and the results demonstrating the possibility to distinguish the coherent effects on
the excitation dynamics are also presented.
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1
Introduction

Photoinduced dynamics of excitation in molecular systems are determined by var-
ious interactions occurring at different levels of their organization. Depending on
the perturbation conditions, the excitation in solids and molecular aggregates may
lead to a host of photoinduced dynamics, from coherent and incoherent energy
migration to charge generation, charge transfer, crystal lattice deformation, or re-
organization of the environmental surroundings. The theoretical description of all
these phenomena therefore requires one to treat part of the molecular system as
an open system subject to external perturbation. Since perfect insulation of any
system from the rest of the world is practically unattainable, the theory of open
systems plays a major role in any realistic description of experiments on molecular
systems.

In classical physics, the dynamics of an open system is reflected in the temporal
evolution of its parameters, leading to a certain fixed point in the corresponding
phase space. This fixed point corresponds to a thermodynamic equilibrium, with
the unobserved degrees of freedom determining the thermodynamic bath. Many
situations in molecular physics allow one to apply a classical or semiclassical de-
scription of the evolution of the perturbation-induced excitation in an open system.
Often, the influence of the large number of degrees of freedom can be efficiently
simulated by stochastic fluctuations of some essential parameters of the system.
Such fluctuations may lead to transitions between several stable fixed points in the
phase space of the system, or, in a semiclassical situation, to transitions between
several states characterized by different energies.

Apart from classical fluctuations, a genuine quantum description might be re-
quired when entanglement between constituents of the system has to be consid-
ered. This is especially essential for systems with energy gaps larger than the ther-
mal energy, which is an energy characteristics of the bath defined by macroscopic
degrees of freedom. Only a full quantum description then leads to proper forma-
tion of a thermal equilibrium.

Indeed it is impossible to switch off fluctuations completely. Even if we place a
system in a complete vacuum and isolate it from some light sources, there still exist
background vacuum fluctuations of the electromagnetic field. Even at zero temper-
ature these fluctuations affect the quantum system, and the resulting spontaneous
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1 Introduction

emission emerges. All these fluctuations cause decay of excited states and establish
thermal equilibrium and stochasticity “in the long run.”

The first part of this book presents a coarse-grained review of the knowledge
which is needed for a description of excitation dynamics and relaxation in molecu-
lar systems. Basic topics of classical physics which are directly related to the main
issue of this book are presented in Chapter 2. It is worthwhile mentioning that
concepts of classical physics are also needed for better understanding of the basic
behavior of quantum systems. The electromagnetic field, which is responsible for
electronic excitations, can usually be well described in terms of classical electrody-
namics. Thus, the main principles of this theory and the description of the field—
matter interaction are also introduced in Chapter 2. The concept and main ap-
plicative features of stochastic dynamics are presented in Chapter 3. Markov pro-
cesses, the Fokker—Planck equation, and diffusive processes together with some
relationships between these descriptions and purely stochastic dynamics are also
described in Chapter 3. The basic concepts of quantum mechanics, which is the
fundamental theory of the microworld, are presented in Chapter 4. Together with
its main postulates and equations, some typical model quantum systems with ex-
act solutions are briefly discussed. The density matrix and second quantization of
the vibrations and electromagnetic field are briefly introduced as well. Special at-
tention is paid in this book to consideration of molecular aggregates. The adiabatic
approximation, the exciton concept, Frenkel excitons, Wannier—Mott excitons, and
charge-transfer excitons are described together with vibronic interactions, the self-
trapping problem, and the exciton trapping problem in Chapter 5. Chapter 6 is
devoted to a discussion of decoherence and entanglement concepts. The problem
of measurements in quantum mechanics and the relative state interpretation are
also discussed. The basics of statistical physics are then presented in Chapter 7.
The relationship between the statistical approach and thermodynamics is briefly
outlined, and standard statistics used for descriptions of classical and quantum
behavior are presented. The harmonic oscillator model of the system-bath inter-
action is described in Chapter 8. In Chapter 9 we describe the projection operator
technique together with the concept of the reduced density matrix and its master
equations. The path integral technique is then discussed in Chapter 10 together
with the stochastic Schrodinger equation approach and the so-called hierarchical
equations of motions. Excitation dynamics and relaxation in some model systems
are discussed in Chapter 11.
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2
Overview of Classical Physics

In this chapter we will review some of the most important concepts of classical
physics. Despite the eminent role played by quantum mechanics in the descrip-
tion of molecular systems, classical physics provides an important conceptual and
methodological background to most of the theories presented in later chapters and
to quantum mechanics itself. Often classical or semiclassical approximations are
indispensable to make a theoretical treatment of problems in molecular physics
feasible. In the limited space of this chapter we have no intention to provide a
complete review as we assume that the reader is familiar with most of the classical
concepts. Specialized textbooks are recommended to the interested reader in which
the topics presented in this chapter are treated with full rigor (e.g., [1-4]).

2.1
Classical Mechanics

Classical mechanics, as the oldest discipline of physics, has provided the formal
foundation for most of the other branches of physics. Perhaps with the exception
of phenomenological thermodynamics, there is no theory with a similar gener-
al validity and success that does not owe its foundations to mechanics. Classical
mechanics reached its height with its Lagrangian and Hamiltonian formulations.
These subsequently played a very important role in the development of statistical
and quantum mechanics.

In classical mechanics, the physical system is described by a set of idealized ma-
terial points (point-sized particles) in space which interact with each other by a
specific set of forces. The coordinates and velocities of all particles fully describe
the state of the system of the particles. The three laws formulated by Newton fully
describe the properties of motion of this system. The first law states that the parti-
cle moves at a constant speed in a predefined direction if it is not affected by a force.
The second law relates the change of motion of the particle due to the presence of
external forces. The third law defines the symmetry of all forces: particle a acts on
particle b with the same force as particle b acts on particle a.

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
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The dynamics of the system of N particles is described by a set of differential
equations [1, 2, 4]:

mit; =Y Fij(ri...Ty). (2.1)
j

Here m; is the mass of the ith particle and F;; is the force created by the jth par-
ticle acting on the ith particle. The velocity of the ith particle is given by a time
derivative of the coordinate #;. For a problem formulated in three spatial dimen-
sions the particle momenta p; = m;#; together with the coordinates r; create a
6 N-dimensional phase space in the three-dimensional real space.

The real phase space is often smaller due to specific symmetries, resulting in
certain conservation laws. For instance, if the points describe some finite body,
which is at rest, the center of mass of all points may be fixed. In that case the
dimension of the phase space effectively decreases by six (three coordinates and
three momenta corresponding to a center of mass equal to zero). If additionally
the body is rigid, we are left with three dimensional phase space, characterizing
orientation of the body (e.g. three Euler angles).

A single point in the phase space defines an instantaneous state of the system.
The notion of the system’s state plays an important role in quantum physics; thus,
itis also useful to introduce this type of description in classical physics. The motion
of the system according to Newton’s laws draws a trajectory in the phase space. In
the absence of external forces, the energy of the system is conserved, and the trajec-
tory therefore corresponds to a particular energy value. Different initial conditions
draw different trajectories in the phase space as shown schematically in Figure 2.1.
The phase space trajectories never intersect or disappear. Later in the discussion of
statistical mechanics this notion is used to describe the microcanonical ensemble
of an isolated system.

Note that in Newton’s equation, (2.1), we can replace t by —t and the equation
remains the same. Thus, the Newtonian dynamics is invariant to an inversion of
the time axis, and the dynamics of the whole system is reversible. This means
that Newton’s equation for a finite isolated system with coordinate-related pairwise
forces has no preferred direction of the time axis. Because energy is conserved,
the whole system does not exhibit any damping effects. The damping is often in-
troduced phenomenologically. In order to achieve irreversible dynamics using a

\ D

-~

§

Figure 2.1 Motion of the system in a phase space starting with different initial conditions.
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2.1 Classical Mechanics

microscopic description, one has to introduce an infinitely large system so that the
observable part is a small open subsystem of the whole. In such a subsystem the
damping effects occur naturally from statistical arguments. Various treatments of
open systems are described in subsequent chapters.

2.1.1
Concepts of Theoretical Mechanics: Action, Lagrangian, and Lagrange Equations

Some problems in mechanics can be solved exactly. The feasibility of such an exact
solution often depends crucially on our ability to express the problem in an ap-
propriate coordinate system. Let us find now a more general way of expressing me-
chanical equations of motion that would have the same general form in an arbitrary
system of coordinates, and would therefore allow a straightforward transformation
from one coordinate system to another. This new form of the representation of
Newton’s equations is called the Lagrangian formulation of mechanics.
Let us start with Newton’s law, (2.1), in the following form:

> (Fi—miF)=0. (2.2)

i

Here we sum up over all particles in the system, and F; = }; F; is the total force
acting on the ith particle. With a given initial condition, the whole trajectory r;(t)
of the ith particle satisfies (2.2). At every point of the trajectory, we can imagine a
small displacement of the trajectory or;(t) from r;(t) to r;(t) + Or;(t), that is, an
infinitesimal variation. We multiply each term of the sum in (2.2) by dr;(t) and
integrate it over time from t; to #,. The right-hand side of the equation remains
zero. On the left-hand side we assume that the force can be expressed by means of
a gradient of the potential V as F; = —dV/dr;, so we get

t2

/dt (Z g—z + mi'fi) -Ori(t)=0. (2.3)

5]

The first term on the left-hand side of (2.3) can obviously be written as a variation
of an integral over the potential:

t t2

A%
/dtza—ri.éri(t) = é/ vdt . (2.4)
i1 v t1

The second term on the left-hand side can be turned into a variation as well. We
apply integration by parts and interchange the variation with the derivative to ob-
tain

t t2
/dtmﬁ,--dri = [mii'i-éri];f—/dtmih-éi',- . (2.5)
i1 t1
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8| 2 Overview of Classical Physics

By assuming now that variation of the trajectory or;(t) is zero at times t; and t,,
thatis, or;(t1) = 0 and Or;(t;) = 0 for all i, we set the first term on the right-hand
side to zero. Therefore, (2.3) reads

ty
6/&(ZZ%MMF_V):O' (2.6)
t1 v

Here we used the rules of variation of a product, and we multiplied the equation
obtained by —1. Now, the first term denotes the total kinetic energy of the system.
The second term is the full potential energy. Thus, the variation of the kinetic en-
ergy must be anticorrelated with the variation of the potential energy. This result is
also implied by the conservation of the total energy.

We next denote the kinetic energy term Y, 1/2m;|#;|? by T, and introduce two
new functions:

£

s:/mn (2.7)

t1

where
L=T-V. (2.8)

Here, S denotes the action functional or simply the action. The scalar function L is
the Lagrangian function, or the Lagrangian. The whole mechanics therefore reduces
to the variational problem

65 =0, (2.9)

also known as the Hamilton principle. According to this principle, the trajectories
r;(t), which satisfy Newton’s laws of motion, correspond to an extremum of the
action functional S. In Chapter 10, we will see that the action functional plays an
important role in the path integral representations of quantum mechanics.

This formulation is independent of any specific choice of coordinates. Trajecto-
ries r;(t) can also be expressed in terms of coordinates different from the original
Cartesian coordinates r. Let us have the Lagrangian expressed in terms of general-

ized coordinates {q;} = {q1, q2,.-., q3n} and their time derivatives {§;}, where N
is the number of particles. The variational problem, (2.9), then leads to
. (or oL
dt| —0 i—i——.d'i):(). 2.10
/ (Miq 0q; 1 (240

t

By integrating the second term by parts under the assumption that dq;(t1) =
04;(t;) = 0 as done for (2.6), we obtain

t2
L d (/0L
t

1

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c02 — 2013/6/3 — page 9 — le-tex

2.1 Classical Mechanics

This can only be satisfied for an arbitrary value of d g; if

d J d
—|—L)——L=0. 2.12
ar (aqi ) ag -0 (2.12)

Equation (2.12) is the famous Lagrange equation of classical mechanics in a form
independent of the choice of the coordinate system.

There is some flexibility in choosing a particular form of the Lagrangian. If we
define a new Lagrangian L’ by adding a total time derivative of a function of coor-
dinates,

e o e s d .
L (qwqwt) - L(qqut) + af(qwt) ’ (2'13)

the equations of motion remain unchanged. The corresponding action integral S’
is

ty ty d
S = /dtL—i—/dtaf(qi,t)
t1 t1

t

= /dtLJr fai(t2), ) = flai(t), 1) , (2.14)

t1

where the last two terms do not contribute to a variation with fixed points at times
t; and t,. By means of (2.13), the Lagrangian can sometimes be converted into a
form more convenient for description of a particular physical situation. We will
give an example of such a situation in Section 2.4.3.

2.1.2
Hamilton Equations

A more symmetric formulation of mechanics can be achieved by introducing gen-
eralized momenta p; as conjugate quantities of coordinates g;. So far the indepen-
dent variables of the Lagrangian were ¢; and §;. Now we will define the generalized
momentun corresponding to the coordinate g; as

0
i=—L. 2.15
Pi= g0 (2.15)
It can be easily shown that in Cartesian coordinates the momentum p; = mg; is

conjugate to the coordinate r;. Let us investigate the variation of the Lagrangian:
oL L
oL = —0q; + —04q; . 2.16
5,0 Z 7,00 (2.16)

First, from (2.12) and (2.15) we obtain a very symmetric expression:

OL=) pidqi+ )y piddi, (2.17)
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10| 2 Overview of Classical Physics

which can also be written as

M:ZPiéqur@(Zpiéi)—Zqiépi. (2.18)

This in turn can be written in such a way that we have a variation of a certain
function on the left-hand side and an expression with variations of p; and ¢; only
on the right-hand side:

5(Zpiqi—L) => qiopi— Y pidgi. (2.19)
The expression on the left-hand side,
H=) pigi—L, (2.20)

must thereqfore be a function of parameters p; and g; only, thatis, H = H(pi, qi)-
By taking its formal variation and using (2.19), we arrive at

i) i)
6H:Za_1;6qi+Z£6pi:Zqiépi_zpié%- (2.21)

Comparing the coefficients of variations of dg; and 0 p;, we get two independent
equations:

oH
pi=—7— (2.22)
aqi
and
oH
gi=—". (2.23)
8pi

Equations (2.22) and (2.23) are known as the canonical or Hamilton equations of
classical mechanics. We usually call the momentum p; the canonically conjugated
momentum only to the coordinate g;. The Hamilton equations represent mechanics
in a very compact and elegant way by the set of first-order differential equations.

The Hamiltonian or Lagrangian formalism applies to systems with gradient
forces, that is, those which are given by derivatives of potentials. This assumption
is true when considering gravitational, electromagnetic, and other fundamental
forces. However, frictional forces often included phenomenologically in the me-
chanical description of dynamic systems cannot be given as gradients of some
friction potential. Thus, the Hamiltonian description cannot describe friction phe-
nomena. The microscopic relaxation theory and openness of the dynamic system
are required to obtain a theory with the relaxation phenomena.
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2.1 Classical Mechanics

2.1.3
Classical Harmonic Oscillator

Let us consider a one-dimensional case describing the movement of a particle along
coordinate x. Correspondingly the potential is defined as V(x). The force acting on
the particle is then F(x) = —gradV = —d/dx V(x), and according to Newton's laws
we can write the equation of motion as

d

mx = ——
0x

V(x) . (2.24)
In the Lagrange formulation we can define the Lagrangian as the difference of
kinetic and potential energies, getting for a particle with mass m
9'62
L=m—~V(x). (2.25)

From (2.12) it follows that d/0x L = mx, d/dx L = —9/dx V(x), and thus

0

(mx) + -~ V(x) =0, (2.26)

dt
which is equivalent to the Newton’s equation as demonstrated in the previous sec-
tions.
Similarly, we can write the Hamiltonian

H=—+V(x), (2.27)

where the momentum p = mx. In this case the Hamilton equations of motion
read

p=——V(), (2.28)

=2 (2.29)

Again we get the same set of equations of motion, which means that the dynamics
is equivalent whatever type of description is chosen. However, the Hamiltonian
formulation gives one clue about the number of independent variables. In this case
we obtain two equations for variables x and p, the coordinate and the momentum,
respectively. Thus, in the context of dynamic equations, it is a two-dimensional
system (two-dimensional phase space).

We can easily solve the equations of motion when the potential surface has a
parabolic form as shown in Figure 2.2. In this case the dynamics corresponds to
the time evolution of the harmonic oscillator with the potential defined by V(x) =
kx2/2. Then the equation of motion is

mi 4+ kx =0, (2.30)
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Figure 2.2 Parabolic potential of the harmonic oscillator (a), and the two-dimensional phase
space of the oscillator (b). The trajectory is the ellipse or the circle.

and the solution is given by

x(t) = Acos(wt) + Bsin(wt), (2.31)
which yields
o' =k/m. (2.32)

Let us take the initial condition x(0) = xy, %(0) = %,. We then get A = xy and
B = %/w. The final solution is then

x(t) = xg cos(wt) + %sin(wt) . (2.33)

We thus find that the frequency of the oscillator is described by the stiffness of
the force parameter k and the mass of the particle m. Keeping this in mind, we can
write the potential energy as

V(ix) = mo"— . (2.34)

The oscillator equation can be given in somewhat more convenient form by in-
troducing dimensionless parameters. Let us take Hamiltonian (2.27) and denote
mw?l? = aw, where | is some typical length of the oscillation and « is a constant.
Denoting y = x/l and z = p/(mwl) or z = y/w, we get the Hamiltonian in a
symmetric form where the coordinate and the momentum are dimensionless:

1
H= an(yz +27). (2.35)
Later we will find that this form of the Hamiltonian is equivalent to the Hamilto-
nian of the quantum harmonic oscillator and the constant « is associated with the
reduced Planck constant.
The solution of the dynamic equations can now be written as

%o Xo iwt
t)y=Re | — + — 2.
y(#) e(l +ilw)e , (2.36)
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2.2 Classical Electrodynamics

z(t) = —Im 4 ) et (2.37)
B 21 2ilw ' '

which shows that the phase space defined by the y and z axes corresponds to
the complex plane and a point xy/] 4+ %o/(ilw) in this space draws a circle. In
the following we often face the application of classical or quantum oscillators. The
latter is described in Section 4.6.1.

2.2
Classical Electrodynamics

For our introduction to classical electrodynamics, the microscopic Maxwell-
Lorentz equations provide a convenient starting point. They enable us to view
matter as an ensemble of charged particles, as opposed to the continuum view
of macroscopic electrodynamics. The microscopic electric and magnetic fields are
usually denoted by E and B, respectively. Let us assume that there are particles
with charges g; located at points r; in space. The density of charge and the density
of current can be then defined as

o(r) =Zqi6(r—ri), jr) = Zqii',-d(r—ri). (2.38)

The Maxwell-Lorentz equations for the fields in a vacuum read [3, 5]

v.g=20 (2.39)
€0
V.-B=0, (2.40)
VX E= aB 2.41
oot (2:41)
10 a .

We introduced the usual constants — vacuum permittivity €, magnetic perme-
ability uo, and the speed of light in a vacuum ¢, which are all related through
¢ = 1/ /éopho. V- denotes divergence, and Vx is the curl operator as described
in Appendix A.1.

The same equations are valid for the microscopic and macroscopic cases. The
difference is only in the charge and current densities, which in the macroscopic
case are assumed to be continuous functions of space, while in the microscopic
case the charge and current densities are given as a collection of microscopic points
and their velocities.
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2.2.1
Electromagnetic Potentials and the Coulomb Gauge

For the subsequent discussion, it is advantageous to introduce the vector potential
A which determines the magnetic field through the following relation:

B=VxA. (2.43)

The magnetic field given by such an expression automatically satisfies the second
Maxwell-Lorentz equation, (2.40). Since for any scalar function y we have the iden-
tity V x (Vyx) = 0, the vector potential is defined up to the so-called gauge function
%, and the transformation

A—> A+ Vy (2.44)

does not change the magnetic field.
The same identity allows us to rewrite the third Maxwell-Lorentz equation, (2.41),
in a more convenient form. Applying definition (2.43) to (2.41), we obtain

0
V x (E + 5A) =0, (2.45)
which can be satisfied by postulating a scalar potential ¢ through

V¢ =E+ %A. (2.46)

It is easy to see that if Ais transformed by (2.44), the simultaneous transformation

O — P — % % (2.47)
keeps (2.46) satisfied. The transformation composed of (2.44) and (2.47) is known
as the gauge transformation, and the Maxwell-Lorentz equations are invariant with
respect to this transformation. This phenomenon is denoted as gauge invariance.

The freedom in the choice of A and ¢ can be used to transform Maxwell-Lorentz
equations into a form convenient for a particular physical situation. Here we will
use the well-known Coulomb gauge, which is useful for separating the radiation part
of the electromagnetic field from the part associated with charges. The Coulomb
gauge is defined by the condition

V-A=0, (2.48)

which can always be satisfied [6].

222
Transverse and Longitudinal Fields

The Maxwell-Lorentz equations provide a complete description of the system of
charges and electromagnetic fields, including their mutual interaction. In most of
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2.2 Classical Electrodynamics

this book we will be interested in treating radiation as a system that interacts weakly
with matter represented by charged particles. It would therefore be extremely use-
ful to separate electromagnetic fields into those fields that are associated with the
radiation, that is, those that can exist in free space without the presence of charges
and currents, and those fields that are directly associated with their sources. Such a
separation can be achieved by the so-called Helmholtz theorem [6]. This states that
any vector field a can be decomposed into its transverse (divergence-free — denoted
by L) and longitudinal (rotation-free — denoted by ||) parts. That is, any vector field
a can be written as

a—altal (2.49)
The transverse field is defined by

V-at =0, (2.50)
while the longitudinal component satisfies

Vxal=0. (2.51)

The magnetic field is purely transverse due to (2.40), and thus the decomposition
of electric and magnetic fields reads

E=E'+E', B=B'. (2.52)

The Maxwell-Lorentz equations for the transverse and longitudinal fields can then
be given separately:

0

V-El == (2.53)
€0
3
VxE+=-—B, 2.54
x a1 (2.54)
19
VxB=——E" it 2.55
x 29 E T H (2.55)
and
19
=— —E! il 2.5
0 c2 ot t o] (2.56)

The last of these equations can be converted into the well-known continuity equation
by applying V and using (2.53):

= V. 257
319 J (2.57)
This means that the longitudinal current density is related to the change of the
charge density and the charge is conserved in the absence of currents.
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16 | 2 Overview of Classical Physics

From (2.39) and (2.46) we can derive the Poisson equation which relates the
scalar potential and the charge density,
Vo =20 (2.58)
€0
and so in the Coulomb gauge the scalar potential is given by the instantaneous
charge distribution. Equation (2.46), which relates the scalar potential to vectors A
and E, can also be decomposed into transverse and longitudinal parts, yielding

El=-vg¢ (2.59)
and
Fro_9a (2.60)
oAt ’

Equations (2.59) and (2.60) therefore decompose the electric field into the E! part
generated by the charge distributions through the scalar potential and the E* part
associated with the vector potential A.

The vector potential, and therefore also the transverse part of the electric field,
can exist without charges. This part then naturally represents the radiation part of
the electromagnetic field and it is necessarily related to the magnetic field. The oth-
er part is all due to charges: the charges create the scalar potential, which generated
the longitudinal electric field. Equations (2.54) and (2.55) lead to

U (WxA — s LA (o LB o it 2.61

( ) 2oz’ c2 9t? = TH (2.61)
where we used the Coulomb gauge condition, (2.48), and the vector identity, (2.60).
The term on the right-hand side is a natural source of the light-matter interaction.

23
Radiation in Free Space

In this section we will show that the relationships of electrodynamics also yield
to the Lagrangian and Hamiltonian formalisms discussed in Section 2.1. For this
purpose we have to identify proper conjugate momenta for the selected “coordi-
nate” variables of the field. For now, we will consider the radiation in a space free
of charges.

2.3.1
Lagrangian and Hamiltonian of the Free Radiation

We now consider the case where the charge density o(r) is zero and thus in the
Coulomb gauge the scalar potential ¢(r) is taken to be zero as well. All electric
and magnetic fields are then necessarily given by the vector potential A. We can

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c02 — 2013/6/3 — page 17 — le-tex

2.3 Radiation in Free Space

therefore choose A as a suitable “coordinate” for the description of the radiation.
The equation of motion for the vector potential is given by

1 9?

VX (VXA g A0, (2.62)
which follows from (2.61) in the case when the current is zero. We multiplied (2.61)
by 1/u, for later convenience."

Let us take the Cartesian coordinate system. Equation (2.62) can be understood
as the equation of motion for the vector potential. We express the equation in com-
ponents Ay, A,, and A, and multiply the components by their variations (a dot
product) to obtain

2
> X > sijkai(sklmiAm)—i—eoa—zAi 0A; =0. (2.63)
— | Ho v X; 0x; ot
Here we used the Levi-Civita symbol ¢; j; to express the cross product a x b (see
Appendix A.1). In order to convert the expression on the left-hand side into a varia-
tion of a functional, we have to integrate it not only over time (as we did in the case
of classical mechanics), but also over space. We will use the same trick to treat the
double spatial derivative as in the case of the time derivatives — we will integrate it
by parts. We also assume that the variations are zero at times #; and t; (the limits of
the time integration) and at the limits of the spatial integration. Under the spatial
integration, the first term on the left-hand side of (2.63) yields

a d
3
/d r E E Sijka—xj (fklma—xlAm) 0A;

i jkim
=_/dsr22 N A PY Y
oy ij m axl m 3xj i
i jklm
:fer(vXA)ka(vXA)k , (2.64)
k
where we used the properties of the Levi-Civita symbol, ;1 = &1;j = —¢gj;. The

second term in (2.62) is handled in the same way as in classical mechanics, and the
resulting variational problem reads

7] 2
6/dr/dt%0 |:cz (V x A — (%A) } 0. (2.65)

Consequently, the Lagrangian density of the radiation field defined as
€0

Loa=7 [AZ — 4V x A)Z] (2.66)

1) We divided (2.61) by u¢ in order to obtain the Hamiltonian corresponding to the energy density.
We could derive the Lagrangian function and the Hamiltonian function without this step and
multiply them by a suitable constant at the end.
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18 | 2 Overview of Classical Physics

leads to correct equations of motion, which can be verified by inserting them into
the Lagrange equations, (2.12) [6].
The momentum p conjugate to A is given as

L .
I (r) = — = ¢A, 2.67
() =37 =< (2.67)
and the Hamiltonian density H (given by H = IT - A — L) of the radiation field is
HZ
Mg = 2 [—2 + AV x A)2:| . (2.68)
2| €

Using (2.43) and (2.60), we can recast this result in a more familiar form,
Hug = 3 / Cr((EYy + B (2.69)

with transverse electric and magnetic fields.

We find that the Hamiltonian of the electromagnetic field has a quadratic form
reminiscent of a harmonic oscillator described in Section 2.1.3. Note that in the
theory of electromagnetic fields we need to distinguish the Lagrangian and Hamil-
tonian from their densities. The latter are denoted by calligraphic letters £ and #,
respectively. We use this distinction throughout this chapter.

2.3.2
Modes of the Electromagnetic Field

It is very useful to introduce the notion of field modes. With this concept we will be
able to show that the free radiation is formally similar to an ensemble of harmonic
oscillators. This idea will be very useful when we turn to field quantization.

A natural way of attacking the solution of (2.62) would be to apply the Fourier
transform in time and space to it, that is, to expand the vector potential in terms of
exponential functions e~'** ¥ These exponential functions solve (2.62) if » =
ck, k = |k|; w is now the carrier frequency and k is the wave vector. The expansion
of the (real) vector potential can be written as Fourier series

A(Y, t) — Z (Ake—iwkt+ik~r + A:eiwkt—ikv) ) (270)
k

The Coulomb gauge requires that for each k
V-A, =ie*"k- A, =0, (2.71)

and consequently Ay, is a vector in a plane perpendicular to k. As k is essentially the
propagation direction of the field modes, the vector potential is perpendicular to the
propagation direction. Defining unit vectors ej; and ey, which are perpendicular
to each other and to k, we can write

Ay = Z €Ak, (2.72)
b

=12
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2.3 Radiation in Free Space

where A = e} - Ag. Itis possible to integrate the Hamiltonian density resulting
from the discrete sum, (2.70), only when the field is limited to a finite integration
volume Q. We imagine the field to be enclosed in a large cubic box with side of
length L, that is, the integration volumeis £ = L3. We assume a perfectly reflective
box, so only the field modes for which el*" = 0 at the borders of the box are allowed.
Such modes can only have components

kl = %nl , kz = %nz , k3 = %n; B ni23 = 1,2,... (273)

The exponential factors with components, (2.73), form a Kronecker delta under the
integration over space,

1 . 1, f k=Fk
_/d3rel(k—k T Sy = or . (2.74)
Q 0, for k#k

as one can verify by direct integration. The Hamiltonian of the radiation, (2.69),
then reads

Hyd = /dmmd =260 ) 0i A5 AL (2.75)
o Ik

If we define two real variables,

qir = VReo (A + A%) (2.76)
and
Pk = —lwV € (A/lk_Ajk) , (2.77)

it turns into a notoriously well known form:

1
Hua =) 5 (Pl + @idie) - (2.78)
7k

Equation (2.78) represents the radiation as an ensemble of independent harmonic
oscillators of unit masses. This makes quantization of the radiation rather straight-
forward, and enables us to apply to the radiation all sorts of results derived origi-
nally for harmonic oscillators.

A very important class of such results are those concerning the statistical ther-
modynamics of radiation as will be described later in the book. Radiation is an
omnipresent thermodynamic bath into which the energy is damped during radia-
tive decays of excited states of molecules. It is therefore important to know how
many oscillators (i.e., degrees of freedom) interact with a molecular transition at a
given frequency w. We are thus interested in the density of modes n(w), which gives
the number of modes (per unit volume) in the frequency interval (w, ® + dw) by
n(w)dw. The easiest way to determine the number of modes is to consider the
number of allowed vectors k which correspond to a given interval (k, k + dk) in
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accord with the dispersion relationship w = ck [7]. The endpoints of all vectors
k with a given absolute value k form a sphere with surface 47k?, and the corre-
sponding interval (k, k + dk) forms a spherical layer with a volume of 4mk?dk.
Equation (2.73) tells us that a cubic volume of 7%/ L* corresponds to each endpoint
of an allowed k. In the spherical layer with radius k there are therefore 4k? L3dk /n?
endpoints. Since according to (2.73) all components of k are positive, only 1/8 of
the volume is relevant. Finally, for each vector k we can have two orthogonal po-
larization vectors, and thus the number of endpoints we counted so far has to be
multiplied by 2. Dividing by L?, we obtain the desired density as a function of k
and using w = ck also as a function of w:
k? w?
n(k)dk = ;dk , n(w)dw = mdw . (2.79)
This result finds use, for example, in the description of spontaneous emission in
Section 4.8, where the radiation forms a bath or environment for an excited emitter.

24
Light—Matter Interaction

In the previous section we described the radiation field free of any matter. How-
ever, the full description of the system of fields and charged particles by (2.61)
contains some matter properties on the right-hand side. We write Lagrangian L,
to describe Newton’s laws for the particles and Lagrangian L,,q to describe the free
radiation. The transverse current j— influences the vector potential A, and at the
same time it depends on . It will therefore play a role in the mechanical part of the
equations of motion. This opens a way to define the Hamiltonian that will describe
the light-matter interaction.

2.4.1
Interaction Lagrangian and Correct Canonical Momentum

In order to find the Hamiltonian formulation corresponding to (2.61) we will be
looking for a light-matter interaction Lagrangian,

Lint = /dr[,im , (2.80)

which produces the desired right-hand side term in the equations of motion. The
free space Lagrangian density of the radiation field does not depend explicitly on A
(it only depends on A and V A). The term 9L/ A in the Lagrange equation, (2.12),
is therefore equal to zero. This term can be used to obtain the right-hand side
of (2.61). Defining the interaction Lagrangian density by

L= j+ A (2.81)

correctly leads to (2.61).
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2.4 Light—Matter Interaction |21

The current j = j L4 j I explicitly contains # (see the definition given by (2.38)),
and its presence in the total Lagrangian L therefore complicates the definition of
the conjugate momentum:

o

== (2.82)

p

The Lagrangian of the isolated matter leads to the purely kinetic conjugate momen-
tum p = m#, and (2.82) gives

9
p=mi‘+$/d3rjl-A. (2.83)

To evaluate (2.83) we have to identify the transverse part of j which gives zero
under application of V. Using the definition given by (2.82), we can write

dk 0 ipir—r:
e ke (r—ri)
/ @)’ Z P
: dk . ik+(r—r;
1; q,-/ Wri kel ) (2.84)

where in the first line of (2.84) we use the component of vectors #; = (%1, %2, %i3)-
It is now clear that j is formed by the components of #; which are perpendicular
to k. The following decomposition of the velocity vector

_ Kk
k| ”

V-j

bo=(Fomn4 Y (Fiew)er, n (2.85)
7

can be used to identify the longitudinal and transverse parts of j. The decomposi-
tion can be written in a tensor manner using the components of the unit vector n
as follows:

Kig =Y Oapfipg = [Nanp+ (Oap — nanp)|ip . (2.86)
s B

The components of the transverse part of j are thus defined as

. dk . ik-(r—r; o
i = / (2m) > ikip(Oup — nanp)e® T =3 qiskipdgy(r— i),
ip

i
(2.87)

where we defined the decomposition of a unity tensor,
Oupd(r) = Ous(r) + Oly(r) (2.88)

by two tensors:
dk )
L — _ ik-r

05p(r) = / (zn)3(6a/)’ ngnp)e (2.89)
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and
dk .
Il v ik-r
45(r) = / o nange* . (2.90)

Using 6(J;ﬁ(r) and 6'{'1 p(r), we can obtain the longitudinal and transverse parts of
any given vector field a as

al(r) :/d3mﬂ<§£ﬂ(r), at(r) :/d’raﬂajﬂ(r). (2.91)

Now we can finally evaluate the new conjugate momentum, (2.83). For its com-
ponents we obtain

Pia = MXiq + qi Z/d3réi‘ﬁ(r —1)Ag(r) = mxiq + q;Aq(ri) . (2.92)
B

Here the fact that A is completely transverse is taken into account. As a result
of incorporation of the interaction Lagrangian, the conjugate momentum of the
particles becomes dependent on the vector potential A.

As we can see, the momentum of a particle is directly affected by the vector po-
tential. We should remind the reader once again that this expression is meaningful
only for the Coulomb gauge, and is not applicable to a general gauge. The vector
potential is fully defined only in a specific gauge.

242
Hamiltonian of the Interacting Particle-Field System

In the previous subsections we defined the canonical variables, the Hamiltonian
and the Lagrangian of the material system and the radiation field. We also deter-
mined the interaction Lagrangian. This allows us now to derive the full Hamilto-
nian of the interacting material system plus radiation. Combining (2.20), (2.66),
(2.67), and (2.81), we can write the Hamiltonian of the interacting system as

H:Zpi-fi+/d3rH-A—Ltot, (2.93)

where Ly is the total Lagrangian of the material system, the radiation and their
interaction, and IT is the momentum conjugate to A. This leads to

1
H = Z Z_ynl(pl — in(r,-))z + V(Tl,..., YN)

1 I1?
+ = / d’r [— + €oc?(V x A)} . (2.94)
2 €0
Here we introduced the symbol V(ry,...,ry) instead of ¢ for the electrostatic

Coulomb potential, which is now equivalent to the scalar potential of the longi-
tudinal field. Equation (2.94) represents the total classical Hamiltonian of an inter-
acting system of charges and fields.
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2.4 Light—Matter Interaction

For our purposes we will group the particles into molecules or supramolecules
(such as clusters or aggregates of molecules), and split the potential V into inter-
molecular and intramolecular parts:

V(En oo Engn) = D VIE) + ) VIELE)) (2.95)

i i<j

where &, denotes the particles forming the nth molecule (or supramolecules). This
splitting is essential. Some interactions, for example, those inside the molecules
or their aggregates, will be treated explicitly (by quantum chemistry, an excitonic
model, or a similar theory), and some, for example those occuring between the
aggregates or the molecules, can be included in the description of the light-matter
interaction.

Our aim is now to write the Hamiltonian in a form suitable for studying the
interaction of molecules with light. First, we split the Hamiltonian into three terms,
where the first term describes the pure material system, the second term describes
the radiation field, and the third term contains the mixed terms:

H = Hmol + Hrad + Hint - (296)

Hamiltonian Hy,, of the molecules should include only the longitudinal fields,
that is,

Huol = ) Hual(§) + Y V(& &) (2.97)
i i<j
where
1
Hual(&) = D ——pf + V(&) (2.98)
JE&i

The radiation Hamiltonian is given by (2.68) and thus the rest of (2.94) composes
the light-matter interaction Hamiltonian:

2
_ qi . 9i 2
Hit = D pi Alri) + )5 = Am)” (2.99)
Equation (2.99) is the so-called minimal coupling Hamiltonian or the p A Hamilto-
nian, which represents a convenient starting point for the discussion of interaction
of small molecules with light.

243
Dipole Approximation

The characteristic dimensions of molecular systems are usually much smaller than
the wavelength of light. The radiation field can therefore be assumed to be homoge-
neous within the extent of the molecule or the molecular aggregate, and the vector
potential A(r;) can be replaced by its value at a chosen reference (e.g., the mass or
the charge center) point inside the molecule:
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24| 2 Overview of Classical Physics
A(ri) ~ A(Rg), i€é&. (2.100)

Now we will use the fact that the equations of motion will remain the same if
we add a total time derivative of a function of coordinates and time to the La-
grangian (see Section 2.1). Let us for simplicity assume that we have just two supra-
molecules or aggregates denoted by & and &,. We will add the following term:

Laga = —%fdsfPL(r) CA(r), (2.101)
where
2
P(r)=>_ > qi(ri— R,)0(r — R,
n=1i€§,
=H50(r—Rg) + pg,0(r— Ry) (2.102)

is the polarization of the two molecules, and p is the dipole moment of mole-
cule €. In the dipole approximation we can also write

d
aPl(r) =jtm, (2.103)

and, therefore,
Ladd:—/d%jl.A—/d% PL.A. (2.104)

Consequently, addition of (2.104) to the total Lagrangian replaces the term contain-
ing the product j» - A by a term containing p - A. As a result, the conjugate
momentum of the particle is again purely kinetic,

pi= mii'i , i€ El, §2 , (2105)
and the momentum conjugate to the vector potential reads
II = —¢E+ — P+ . (2.106)

The Hamiltonian that results from the Lagrangian L’ = L + L,qq reads
1 s | I : 2 2
H=Hpg+ = | &’r| — + €c”(V x A)
2 €0
1 3.pl 1 3. pl2
+— | &rptmm+ — | &PriptP. (2.107)
€0 260

The transverse polarization consists of contributions of the two molecules, P+ =
Pf‘ + P3-, and thus the last term can be divided into intramolecular and inter-
molecular parts:

1 1 1
— | & P“:—/d3 PLt.pt 4+ — /d3 P, 2.108
260/ r| P~ o rPy - Py +2€o 522 r|Pg| ( )

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c02 — 2013/6/3 — page 25 — le-tex

2.4 Light—Matter Interaction

It can be shown [6] that in the dipole approximation the intermolecular part (the
first term on the right-hand side) exactly cancels the interaction between the supra-
molecules }°;_; V(&;, §;) provided V(&;, &) includes only dipole-dipole interac-
tion as well. The Hamiltonian therefore contains only the noninteracting part of
Hmol = Y_; Hmoi(&;). The second term on the right-hand side is an intramolec-
ular contribution of the polarization which we will disregard with the provision
that it does not play an important role in the radiative processes. The last step of
our analysis of the Hamiltonian is the definition of a new field D(r), the so-called
displacement vector, as

D(r) = e E(r) + P(r). (2.109)
From (2.105), we can see that IT = —D~. The total Hamiltonian can therefore be
written as

H= Z Hmol gl / d’r ( )

S— Zpgl L(Rg,) . (2.110)

Hamiltonian (2.110) is a possible starting point for studies of the light-matter
interaction for nanoparticles and molecular aggregates. This interaction Hamilto-
nian (the last term) is in the convenient form of a product of the molecular dipole
moment and the transverse field. In practical calculations, we can often assume
that the polarization is linearly proportional to the electric field, that is,

P(r) = eoy E(r) (2.111)
and
D(r) = €o(1 + x) E(r) = €0 E(r) (2.112)

where y and ¢, are the linear susceptibility and the relative permittivity, respectively.
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3
Stochastic Dynamics

Many dynamic processes can be characterized as so-called stochastic. This class
of dynamic processes is widely used to describe the time evolution of open sys-
tems [8, 9]. In open systems, the degrees of freedom of the system under consid-
eration constitute a small part of the total number of degrees of freedom of the
system and its environment. If the environment coordinates are not followed ex-
plicitly, we can only observe the system dynamics affected by a large number of
unknown forces. These forces may drive the system in an unpredictable way and
we cannot use simple deterministic differential equations to describe the degrees
of freedom of the system. To provide a convenient description of this situation, we
can introduce the concept of stochasticity and characterize the stochastic evolution
by probabilities that the system is in certain states, and the dynamics between these
states is stochastic.

One such stochastic process is the celebrated Brownian motion of a microscop-
ic bead in a liquid, first described by Brown in the 1830s. The bead in a liquid is
pushed randomly by fluctuating molecules from the surroundings. As the particle
interacts with many degrees of freedom of the liquid simultaneously, the net fluc-
tuating force becomes Gaussian due to the central limit theorem. Not only classical
Brownian motion falls under this category, but an arbitrary process in the system
coupled to the fluctuating environment can also be described by a stochastic pro-
cess of some sort. It will be demonstrated later that quantum mechanics describes
some intermediate case between the deterministic and probabilistic nature of the
dynamics where the wavefunction is defined by the deterministic equation, and the
measurement process is purely probabilistic.

3.1
Probability and Random Processes

To introduce random processes we have to turn back to the probability theory. The
elementary starting point is the concept of a set of random events. We define certain
indivisible elementary events which compose the so-called probability space. The
probability space can then be divided into various regions covering some groups
of elementary events which are associated with observable random events. It is
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3 Stochastic Dynamics

Probability space

Elementary events

Figure 3.1 Probability space of random events: black dots represent the elementary events, and
events A-C cover some elementary events. All elementary events create the probability space.

thus easy to think of a random event as a set of elementary events. This concept
is presented graphically in Figure 3.1. Let us now introduce some concepts of set
theory which are useful in the description of random events.

Consider two sets A and B. If set A is said to be a part of set B, A is a subset
of B, and this dependence is denoted by

ACB. (3.1)
Union of sets denoted by
C=AUB (3.2)

creates a new set, the elements of which are given by elements of A and B. Thus,
sets A and B become subsets of the resulting set C. Intersection of sets

D=ANB (3.3)

creates set D, which is formed by the elements shared by A and B. For complete-
ness we also introduce the concepts of an empty set @ and the full set 2. The empty
set has no elements and the full set has all elements of the probability space.

A set complement to set A contains all elements of the full space which are not
present in A. We denote such a set by A°. We next introduce the complementarity
operation,

C=B\A, (3.4)
which removes all elements from B which are in A, and we can write

A=Q\A. (3.5)
By definition we thus have

ANA=0 (3.6)
and

AUA=Q. (3.7)
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3.1 Probability and Random Processes

BCA

2
2

C=BUA C=BnA C=BnA

Figure 3.2 Main definitions and operations of sets: £ denotes the set covering the full space, A
is a “finite” event, and A° is the complement set. The bottom row describes the union, intersec-
tion, and subtraction operations as described in the text.

Geometrically these operations are represented in Figure 3.2.

A random event is now understood as a realization of the elementary events be-
longing to a specific set: event A happens when one of its composing elementary
events is realized. To quantify the event we introduce the probability of the event
P(A). Three axioms of Kolmogorov fully characterize the probability of events. The
first axiom states that the probability is defined as a nonnegative number. The sec-
ond axiom denotes that the full set is characterized by probability 1:

P(Q)=1. (3.8)
The empty set then has
P@)=0. (3.9

The third axiom states that the probability of the union of nonintersecting sets is
given by

P(U;A) =Y P(A)). (3.10)

It follows that a union of an arbitrary two sets has probability
P(AU B) = P(A) + P(B)— P(AN B). (3.11)

In practice for all other events (or sets), the probability is given as a limit of the
ratio of the realizations of event A, which we denote by my4, and the number of
trials N; thus,

P(A) = lim —=2. (3.12)

This relation is known as the theorem of large numbers. It represents the proper
recipe to experimentally determine probabilities of various events, and it is behind
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3 Stochastic Dynamics

the idea of the Monte Carlo simulation of stochastic processes. However, this re-
quires a lot of trials, but some events should not be tested experimentally (e.g., the
reliability of a nuclear power plant).

Conditional probability is one of the important concepts for discussion of physical
processes. Consider an event A. It may happen that in some instances of realization
of event A, event B happens at the same time. Such an event should be related
to the overlap region of sets A and B. Let event B be the additional necessary
condition that we want to include in describing event A. In this case the space of
possible events is limited by set B, because realization of B is necessary. We denote
this conditional probability as P(A/B). The event that A and B happen at the same
time is given by the set AN B and the probability is thus proportional to P(AN B).
However, since event B is a necessary condition with its own probability P(B), the
proper normalization requires that the conditional probability satisfies

P(AN B)

P(A/B) = —rE (3.13)

Alternatively, we can define the probability of the intersection as
P(AN B) = P(A/B)P(B). (3.14)

This allows us to define the independent events. If A is independent of B, the con-
ditional probability that A happens with the condition of B is just the probability
of A, that s,

P(ANB
P(A/B) = % = P(A). (3.15)

This also means that for independent events we have
P(AN B) = P(A)P(B). (3.16)

Let us now consider the space of events £ and disjoint events B; which fill the
whole space as shown in Figure 3.3. It holds that

UjB;=Q. (3.17)
An arbitrary event A can then be given as
A=U;(ANB)), (3.18)
which for the probabilities gives
P(A)= > P(AN Bj). (3.19)
J

Now we use the properties of the conditional probability and obtain the following
important relation:

P(A) = P(A/B;)P(B;). (3.20)
j
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3.1 Probability and Random Processes

Figure 3.3 Sets B are nonintersecting and they span the whole probability space. Set A is given
by union of intersections with whole B;.

The interpretation of (3.20) is as follows. Let us consider the system at a specific
time described by a set of states B; with their probabilities P(B;). If at a later time
the system arrives at state A with probability P(A), the conditional probabilities
P(A/Bj) can be regarded as the probabilities of the transitions from states B; to
state A. The conditional probability thus becomes a central concept of the stochastic
description of dynamics.

Having defined the set of events and the probabilities, we move to another impor-
tant concept, namely, the one of random variables. A random variable is a specific
representation or mapping of the elementary event onto real numbers. All elemen-
tary events w are associated with real variables, which we denote by x(w). If this
mapping is unique, that is, different elementary events are mapped onto different
numbers, the random variables can be assigned to probabilities of the correspond-
ing elementary events.

Random variables can be characterized by various means. For instance, the nth
moment is defined by the following average:

(x") =) x"(@)P(). (3.21)

The most important random variables in the stochastic description are the low
moments, the mean value (x'), and the dispersion

D(x) = ((x — (x))?) = (x?) — {x)*. (3.22)

The dispersion characterizes the width of the spread of the random numbers.
Higher moments are less important in most cases with physical relevance.

When we introduce the time axis, and order the random variables in time, we ob-
tain a set of numbers which describes a so-called random process. In this process we
have random variable x; at time t;, then x, at time ¢,, and so on. It is advantageous
sometimes to describe a so-called characteristic function of a random process, as
described in Appendix A.2.
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3 Stochastic Dynamics

3.2
Markov Processes

The random process introduced in the previous section describes some time tra-
jectory of variable x. Let us assume that at time t; it has value x;, at time ¢, value
%2, up to value x, at time t,. We denote the probability of such a composite event
as

P(Xntn,...,Xth,xltl) . (323)

This probability describes the trajectory as a whole. We may now ask what is the
probability of this composite event if we know that before it we had a process
x(t, %15, ..., x,,t,. . As described in the previous section when we introduced con-
ditional probabilities, such a composite event can be characterized by a conditional
probability. If we denote the probability of the composite event as

P (Xntn, ..., %2t X1t1, Xpy by, oo, X585, X1 E7) (3.24)

we can write

P (Xntn,..., %2t X1t1 /X thy, .., X5 t5, X(E])
18 1Y
_ P (Xntn, ..., Xty X1ty, X b, .o, X585, % 8]) (3.25)
2% /2 : °
P (x), ], ..., %58, x{t])

We thus imply a relation between all n 4+ m points in time. If we take t, > £,
> > b >t > .- > t], we imply a long “memory” for the process: the present
state depends on a long chain of previous events.

The Markov process is a subset of the process described above with the assump-
tion of a short memory. The Markov assumption is that the process or the present
state depends only on a single previous time. This condition means that

/A v /v
P (Xntn, ..., %k, X1ty /%, bry, ..o, X585, %(E])

= P(xntn,...,xztz,xltl/x:ntin) . (326)

Consider now three different time moments. A process with three steps is char-
acterized by the probability P(x3t3, X, ¢, %1 t1). According to (3.25), we can write

P(x3ts3, x2tp, x1t1) = P(x3t3/x2t2, x1t1) P(%2t2, x111) - (3.27)

From the Markov assumption we have P(x3t3/x,t;, X1t1) = P(x3t3/%,1;), and we
get

P(X:;t;, X1, Xltl) = P(X3t3/x2t2)P(x2t2/X1tl)P(xltl) . (328)

Again, the conditional probabilities describe the probability of a transition from
state x; to state x3. Also according to (3.16), different transitions in the Markov
process are independent. Generalization of (3.28) is straightforward:

P(Xntn,...,Xth,xltl) = P(xntn/xn_ltn_l) P(thz/xltl)P(Xltl) . (329)
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3.3 Master Equation for Stochastic Processes

The conditional transition probability P(xt/x’t’) essentially represents a propa-
gator of the process, and it has the following obvious properties. The probability of
a transition to an arbitrary state of space is

> P(xt/x't) =1, (3.30)

also

> P(xt/x't)P(x't) = P(xt), (3.31)

x/

while for a transition at the vanishing time interval

lim P(xt/x"t) = Oy . (3.32)
t—>t’
Let us now consider three states in space x again. For the transition from state
X to state x3 we can write

P(X3t3, xltl) = P(X3t3/X1t1)P(x1t1) . (333)
Also note that

P(xsts, x1t1) = Y P(x3ts, %2y, 1) (3.34)

%2

and using additionally (3.28), we have

P(x;t;/xltl) = Z P(x3t3/x2t2)P(x2t2/x1t1) . (335)

2

This is the so-called Chapman—Kolmogorov equation for conditional probabilities.
Its interpretation is straightforward. For a system or a particle in state x; to reach
state x3, the system must propagate through all possible intermediate points of
space, and the resulting probability is additive in all intermediate states. In this
description the conditional probability corresponds to the system propagator. The
propagator of the Chapman—Kolmogorov equation thus defines the Markov pro-
cess. It is often not possible to solve the integral Chapman—Kolmogorov equation
directly, and its differential form, which is considered next, is often a more conve-
nient alternative.

33
Master Equation for Stochastic Processes

As we have already pointed out, the differential form of the Chapman—Kolmogorov
equation is often preferential, since the solution of differential equations is easier.
It should be noted, however, that differential equations do not cover the whole set
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34| 3 Stochastic Dynamics

of possible Markovian problems. They allow one to describe only continuous-time
problems with differentiable propagators. Most of the physical problems consid-
ered in this book satisfy this condition, so we will not worry about undifferentiable
processes.

Let us assume we have a time-continuous process and let the probability be dif-
ferentiable with respect to time. In this case we can take the Taylor series for the
probability

P(x,t+ A) = P(x,t) + a1 4 + a, 4> + ..., (3.36)

where a; are some constants. We then define the derivative of the probability
d P(xt) = li ! P(x,t+A)— P(x,t 3.37
- P(xt) = lim —[P(x,t + 4) = P(x,1)]. (3.37)

Note that when A4 — 0, the probability P(x,t 4+ A) approaches P(x, t) linearly
with 4, so the difference P(x,t + 4) — P(x,t) ~ a1 4.
We now apply the probability expansion, (3.31), to the probability P(x,t + A4):

P(x,t+4) =Y P(x,t+ A/x1t) P(xit) . (3.38)

X1

For the derivative we thus obtain

%P(xt) = Al‘ii)noi [; P(x,t 4+ A]x1t1) P(x1t1)
-> P(x,t/xltl)P(xltl):| : (3.39)

By separating the “diagonal” terms x; = x, and taking t; = ¢, we have

d 1|
> P(x,t+ A[x1t) P(xi )

X1

— (1= P(x,t 4+ A/xt))P(x, 1) | . (3.40)

The conditional probability P(x, t + 4 /x;t) for x; # x and 4 = 0 is actually zero,
that is, P(x,t/x1t) = 0. When 4 — 0, the probability should behave at least as
P(x,t + A/xt) o< A. Similarly, the conditional probability for x = x; behaves as
P(x,t+ A/xt) < 1— A (the minus sign denotes that the probability is always less
than 1).

We can introduce the probability transfer rates:

. 1
kv = lim = P(x,t +A/x1), x#x (3.41)
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3.3 Master Equation for Stochastic Processes
and

1
by = lim (1= P(x, t 4 4/x1) . (3.42)
The diagonal and off-diagonal rates k., and k., are both positive quantities, and
we can thus write the differential system of equations:

d X1 FEx
3 Plet) = ; kyxy P(31t) — kyy P(x, 1) . (3.43)

This equation is known as a master equation for probabilities. It can be direct-
ly obtained from the Chapman—Kolmogorov equation, (3.35), which means that
the master equation, (3.43), is essentially the differential form of the Chapman-
Kolmogorov equation.

The rates now have a very clear physical meaning: k., denotes the rate of supply
of the probability at state x, originating from state x;, and k., denotes the rate of
loss of the probability from state x. Note that if we sum up the probabilities over
the whole space, we must obtain

> Pxt)=1, (3.44)

which means that the probability of being found in an arbitrary state or at an arbi-
trary coordinate is 1. Applying this to the master equation, we have

d
g zx: P(xt) =0 (3.45)
or
X1 X
Y1 D ks Plwrt) — kyu P(x, 1) | =0 (3.46)

We can now rewrite this as

Z Z [(1 - 6xx1)kxx1 - 6x1x kxx] P(xlt) =0, (347)

and the result should be independent of state x;. We thus get the following require-
ment for the rates

XxFEx1
kxlxl = Z kxxl , (348)

which is called the detailed balance condition. It signifies that the total rate of the
probability loss of a given state is equal to the sum of all possible escape channels
from that state. This condition guarantees that the total probability is conserved at
all times.
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3 Stochastic Dynamics

3.3.1
Two-Level System

As an example, let us consider a system with two possible states a and b. The rates
of the transitions between these states are k,j, and kj,; the system is sketched in
Figure 3.4.

The system dynamics is defined by the following master equation:

%P(a, t) = —kpaP(a, t) + kap P(b, t) ,
%P(b, t) = +kpa P(a,t) — kap P(b, t) . (3.49)

Since this is a linear first-order equation, its solution must be of the form
P(x,t) = A, exp(At) . (3.50)
Inserting this form into the master equation, we get its characteristic equation

AAu;s = —kpaAai + kapApz,
AApy = +kpaAai — kapApi, (3.51)

or in the matrix form we get the eigenvalue equation:
_kba kab ) (Aa/l) (Aal)
=1 . 3.52
( kpa  —kap) \Apz Ay (3:52)

This allows us to determine the values of 1; = 0 and A, = —(ky, + kps) = —K,
and correspondingly the probabilities of states a and b are given by

P(a,t) = Ay + A, exp(—Kt) (3.53)
and
P(b,t) = Ay + Ap exp(—Kt) . (3.54)
b
P,
kva  |kab
a L) X

(@) (b)

Figure 3.4 The two-level system. It is described by upward kp, and downward kg, rates (a). The
exponential relaxation toward equilibrium is shown in (b).
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3.4 Fokker—Planck Equation and Diffusion Processes

Since for completeness we must have P(a, t) + P(b, t) = 1 at all times, this results
in

Ag+ Ay =1 (3.55)
and
Apn+Ap=0. (3.56)

We are therefore left with two unknown constants which should be determined
from the initial conditions. The exponential dynamics of (3.53) and (3.54) is shown
in Figure 3.4b, where the initial occupation P(b,t = 0) of state b is 1 and P(a,t =
0) = 0. At long times the probabilities equilibrate exponentially.

We can see that systems of this type should have the following property: one
solution of the characteristic equation is 44 = 0. This signifies the existence of
an “equilibrium” at t — oo. In the present case we have P(a,t = o0) = Ay
and P(b,t = oo) = 1 — Ay;. The second insight is that all other solutions of the
characteristic equation are negative, thatis, A; < 0. All negative 4 signify transient
processes.

3.4
Fokker—Planck Equation and Diffusion Processes

So far we have considered a discrete space of events although we allowed arbitrary
transitions between system states in continuous time. In this section we consider
the continuous space of states, or processes which take place on a continuous axis.

Assume that a process takes place on the real number axis. In the case when the
number axis is infinitely dense, the probability P(x), describing the probability of
being at coordinate x, has to be replaced by the probability density. We denote the
probability of finding the system in the interval from x to x + dx by p(x)dx; p(x)
thus has the dimension of the inverse coordinate, while the probability remains
dimensionless.

The resolution expression for the probability, (3.31), in the case of a continuous
space reads

p(x3t3) = /p(x;t;/xztz)p(xztz)dxz . (357)

The propagator P(a/b) has been replaced by the transition density p(x3t3/x,t;)dxs,
which denotes the transition from coordinate x;, into the interval [x3, x3 + dx3).

Following the derivation of the master equation for probabilities, (3.43), as given
in the previous section, we can now obtain the equation for the probability density.
The time derivative of (3.57) reads

d dp(xt/xt
TR =/dxz%p(xztz), (3.58)
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3 Stochastic Dynamics

where

dp(xt/xyt .1

% = lim — (plx,t + A/321s) = plxt/nt)) - (3.59)
We now take t, = t to get

dp(xt/xt) .. 1

—a —Ahi)noz(p(x,t+A/xzt)—5(x—x2)) . (3.60)

Here the expression seems to have a discontinuity at x = x;,; however, the first
term on the right-hand side (p(x,t + 4/x,t)) approaches é (x — x,) as 4 — 0, and
the discontinuity is therefore canceled.

We can now assume the probability of jumping by a distance y = x — x; to
decrease rapidly as the length of the time interval for the jump decreases to zero.
This implies that only jumps to nearby positions are possible. To emphasize this
behavior, we rewrite the probability of jumping from x; to x as follows:

lim 1 (p(x,t 4+ A/xt) — O(x — x3)) = f(x2, x — %2, ) . (3.61)
A—0 A
Now x — x; = y can be taken as the small jump increment. Function f(x, y,t)
represents the rate of transfer from x to x + y at time ¢.

Let us now turn back to (3.58). Changing the integration variable to y (while x is
kept constant), we get a master equation in continuous space

d
3P0 = [ @iy npe =y (3.62)

As only transitions into regions near x are possible, f(x, y, t) is a smooth function
of x, but it is a sharp function of y. It has a maximum at y = 0, and it decays as
|y] > 0. Let us consider now the transition from some original point x, to the final
destination point x¢. Such a transition is characterized by the density increment
f(%0, ¥, t)p(%0, t). As f(x,, y, ) is a slowly varying function of the origin x,, and it
is nonzero only for small y, while p(x,, t) is a smooth function of x, we can expand
the density increment around the final destination point xf = x, + y as follows:

d
flor y Dp(xo, 1) & Lim [ax (f (%o 7> )Xo 1)) - (%o — )
19 ,
+ S Ul p 9l ) (o= 507|669

Notice that we do not have the zero-derivative term as described in the previous
paragraph. We replace x, — xf by —y and we obtain

3
f(%0, y, t)p(%0, t) & lim [—37 (f (%0, ¥, t)p(%0, t)) - ¥

o7 (f(xo, v, t)o(x0, 1)) - Yz] : (3.64)
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3.5 Deterministic Processes

Plugging this expansion in the master equation, (3.62), we get its simplified form
where lim,_ _,, can now be realized. Denoting

[ @ fpney = gt (3.65
and

[ @ Sy vt = Dl (3.66)
we finally obtain the well-known Fokker—Planck equation in the form

d 0 1 9

ap(xt) == [g(x, t)p(x, t)] + 292 [D(x, t)p(x, t)] - (3.67)

So far we have obtained the Fokker—Planck equation only formally. The physical
interpretation of its parameters will be given below. However, we can now write the
equation in the form of the continuity equation:

dt ( ’ ) ax J( ’ ) ’ ( ’ )
Whel’e

190
Je, 1) = g, )p(x, 1) = 55— D, Hplx, ) (3.69)

is the probability flux in the x space.
Let us consider now as an example the case when g = 0 and D = const. In this
case we get the famous diffusion equation which describes Brownian motion:
dp(xt) D d*p(x,t)

a2 axr (3-70)

Its solutions are Gaussian functions, and the parameter D is the diffusion coeffi-
cient. Thus, one type of process that the Fokker—Planck equation describes is dif-
fusive flow. Other types of processes are described in the next section. A more de-
tailed discussion of various types of stochastic processes can be found in relevant
textbooks (e.g., [10]).

3.5
Deterministic Processes

In the previous sections we described the stochastic Markov process. The deter-
ministic processes were described in Chapter 2. It turns out that an arbitrary deter-
ministic process is a Markov process. Both of these types of processes are usually
described in different representations, however, they can be unified. Let us consid-
er a process described by a set of dynamic variables x,. The deterministic evolution
of the variables is fully described by a set of differential equations:

0%y
ot

= gu(x%1...%N) . (3.71)
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Instead of specifying all x,,, we will use a vector field x. The solution of this equa-
tion for the initial value x; can be denoted by ¢,(x;) = xy. Thus, we can also write

Pits(xi) = Pi(Ps(xi)) - (3.72)

The evolution of the system in the phase space is given by infinitesimally narrow
phase space trajectories, and the propagator is therefore given by the following
0 distribution of trajectories:

p(xstelxiti) = O (xf— Py (1)) - (3.73)

Using (3.72), we can write

O(xr— Prps(xi) = /dxé(xf— P1(%))0(x — s(xi) , (3.74)

which is essentially the Chapman—Kolmogorov relation for the propagator. So as
the deterministic process satisfies the Chapman-Kolmogorov equation, it must be
Markov.

Later we will describe statistical ensembles of systems, so we turn to work with
probability densities for the deterministic dynamics. If we have the probability den-
sity at some initial time p(xt;), its time evolution can also be calculated using (3.62).
For the deterministic process we thus have

d d
e = [ax ot = pentmpinn). (375)

Here x; is a point in phase space different from point x, and ¢,—,(x2) = */(t)
is the phase space trajectory as a function of time t. The derivative is calculated by
using the usual chain rule

d , ax! (1) ,
ol —(1) = Z ’;t(t) T [0(x — %/(1))], (3.76)

and in the integral we can take the limit t, = ¢, which also gives x, = x’. Apply-
ing (3.71), we get

d 0

ap(xt) = /dx/ Xn:gn(x/)m [0(x — )] p(x"t) . (3.77)
Integrating the delta function, we finally obtain

d 0

3P = Z PP G COIR (3.78)

Equation (3.78) is the celebrated Liouville equation for a deterministic process in
the phase space. We can now immediately look back at the Fokker—Planck equa-
tion, (3.67), and associate its first term with the deterministic drift of the probabili-
ty, and the second term describes the diffusive irreversible spread of the probability.
Thus, most dynamic processes in physics are Markov processes.
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3.6 Diffusive Flow on a Parabolic Potential (a Harmonic Oscillator) | 41

A typical deterministic process can be described by the Hamiltonian dynamics of
the classical dynamic system. Given the Hamiltonian H in the space of coordinates
qn» and momenta p,, as described in the previous chapter, the evolution of the
system is described by Hamiltonian equations:

dg, _ 0H

T (3.79)
dp,  O0H
&g (3.80)

According to mechanics, the probability density in the phase space follows the clas-
sical Liouville equation of the form

(4, p)
ot

={H,p(q,p)}, (3.81)

where { f, g} denotes the Poisson brackets. Denoting the dynamic variables by q; =
X1,...qN = XN, P1 = XN+1,--- PN = %N, and 0H/dp, = g, 0H/3qy, = —gN+n,
we get the Liouville equation in the form of (3.78). Thus, the classical Hamiltoni-
an dynamics is essentially described by the Fokker—Planck equation without the
diffusion part.

3.6
Diffusive Flow on a Parabolic Potential (a Harmonic Oscillator)

Let us now consider a one-dimensional parabolic potential:

V(x) = k% . (3.82)
In this case the driving force is defined as

F(x) = —kx, (3.83)

and the Fokker—Planck equation is given by

d D ¢
(x,t) = k—xp(x,t) + ?Wp(x, t) . (3.84)

Ep 0x

If we introduce dimensionless time v = kt, and replace the coordinate by

v/ %x =y, (3.85)

we have

4 r—i t+a—2 t 3.86
df”(Y’ )—ayyp(yy) asz(yy)- (3.86)
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Consider now a stationary state so that dp/dt = 0. In this case we have the
equation

P +yo' +p=0. (3.87)
To find the solution we make an ansatz p(y) = exp(g(y)), which gives
1+g" =—(vg +¢7). (3.88)

The solution of this equation is simply

=—=. 3.89
g=-2 (3.89)
So we find that the steady state or the equilibrium distribution is represented by a
Gaussian function:

(3.90)

It is centered at zero and decays to the ends. This is tightly connected with the
statistical canonical distribution of the probability on the parabolic potential as will
be described in Section 7.3.2, which is devoted to problems in statistical physics.

Since the steady-state solution is Gaussian, we look for a Gaussian form of the
solution of the nonstationary problem as well. We take an ansatz

p(y.7) = exp(—A(r)y® — B(r)y — C(7)) . (3.91)

Plugging this into (3.86) and comparing the coefficients at equal powers of y, we
get the set of three equations

C=-1+24A-B%, (3.92)
B = B(1—44), (3.93)
A=2A(1-24). (3.94)

We can solve these equations starting with one for A. The solution is

1
A= (3.95)
e—t—l—a—b
B= Smg (3.96)

where a and b are still undetermined constants. The function C can be obtained
from the normalization of the probability density.

These expressions now have two undetermined constants a and b. We obtain
them by assuming that the initial probability distribution is

p(t =0) = 0(y — yo) - (3.97)
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In order to relate this with our form of the solution, we take for the initial condi-
tion a Gaussian representation for the delta function, that is, we take a Gaussian
centered at yy with vanishing dispersion. Around v = 0 we therefore have

p(t — 0) = exp(—S(y — yo)?) (3.98)

with S — oo. In this limit we must have

—A(1)y? = B(r)y — C(1) = =Sy + 25yy0— Sy; (3.99)
or

S=A, (3.100)

2Syo=—B. (3.101)
From the first condition we find that e* = 2 satisfies the requirement that the

dispersion approaches infinity as 7 — 0. From the second condition we find e =
yo- This gives the unnormalized density

1y”—yoye™®
From the normalization requirement
/dyp(y, 7)=1 (3.103)
at arbitrary time we get the normalization factor
1 1 —T)2
n(t) = ————exp (——M) , (3.104)
2m(1 —e~?7) 21—e7?r
which finally gives
L 1(y—yoe™")?
_ 2 , 105
oy, 7) =] eXp( =T (3.105)

This expression shows that the distribution remains Gaussian at all times. It ap-
proaches the steady-state solution defined by (3.90) exponentially as shown in Fig-
ure 3.5. We thus find that in a parabolic potential the relaxation of the displacement
is exponential,

(y) =yoe™ ", (3.106)
while the dispersion of the distribution is
(= (1)) =1—e2 (3.107)

We have described only a simple theoretical model here. A more direct application
of stochastic theory to physical problems of this kind can be found in relevant
textbooks (e.g., [8]).
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Figure 3.5 Decay of the probability distribution on a parabolic potential into the equilibrium
Gaussian according to solution (3.105).

3.7
Partially Deterministic Process and the Monte Carlo Simulation of a Stochastic
Process

In practice the system may be often described by the Fokker—Planck equation,
which includes a deterministic drift and a diffusive flow. It is, however, not triv-
ial to obtain a solution of the Fokker—Planck equation in many dimensions. This
is an important problem especially in the theory of many-body quantum systems.
Instead of the Fokker—Planck equation, it is often possible to get specific stochastic
trajectories x(t) that describe particular processes occurring in the system. Later
the averaging of stochastic trajectories may be used to obtain the dynamics of the
probability density.

The partially deterministic process (PDP) is one of the processes which can be de-
scribed by the above scheme [9]. The PDP is considered a deterministic process in
certain time intervals. Between these intervals the system makes stochastic jumps.
Using the ideas of previous sections about the transition probability, we can write
the propagator of the PDP similarly to the description used to characterize the de-
terministic process. Additionally, we have to introduce the rates of jumping from
state x to state x/, denoted by k(x’|x). The propagator for a small time interval 4
can be written as

p(x,t+Alx',t) = (1= T'(x)4)0(x — pa(x)) + k(x]|x")4 . (3.108)
For the deterministic trajectory we can assume a short-time limit ¢ 4(x’) ~ x’ +
g(x")4, while

I'x'y= /dxk(x|x’) (3.109)

is the total rate of a jump out of point x’. The quantity (1 — I"(x’)4) thus repre-
sents the probability that the system does not jump out of state x’. In this case
the propagation proceeds according to the deterministic evolution described by the
Kronecker delta.
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3.7 Partially Deterministic Process and the Monte Carlo Simulation of a Stochastic Process

1—W(r|z,t)

()
i t‘II*T I
W(r|z,t) AW (7], t)

Figure 3.6 Definition of the waiting time distribution in the partially deterministic process.

The Liouville-like equation for the PDP is now given by

9 9
o b(x, 1) = ———[g(x)p(x, )] +/dx’[k(xIX’)p(x/y t) = k(x[x)p(x, )] .

ot 0x
(3.110)

The first term here describes the deterministic drift, and the second term denotes
the stochastic jumps between states. This equation is similar to the Fokker—Planck
equation; the jumps, however, do not occur continuously. The equation is also often
referred to as the Liouville equation.

Next we introduce the most important quantity in this section — the waiting time
distribution W (t|x,t). It describes the probability of a jump realization during the
time interval from t to ¢t 4+ 7 when the system is in state x at time ¢ (see Figure 3.6).
The difference

W(t + dt|x,t) — W(r|x,t) = dW(r|x, t) (3.111)

is the probability of a jump occurring in the infinitesimal interval dt after ¢t + 7. If
we now divide d W by the probability that no jump occurs in the interval 7, which is
1— W(t|x, t), we get the normalized conditional probability of a jump occurring in
the interval dt after t+ v when no jumps occurred during 7. If there were no jumps
during 7, the system propagated along a deterministic trajectory ¢(x), and later
there was a jump in the interval dr at a rate I'(¢,(x))dz. This can be summarized
in the relation

dW(r|x,t)

Wl T (¢(x))d7 . (3.112)

Equation (3.112) is a differential equation which can be easily integrated into

W(r|x,t) = 1—exp —/dr’F(q),f(x)) . (3.113)
0

This expression immediately implies an exponential character of the waiting
time distribution. For instance, if the process is purely stochastic so that ¢,/(x) =
x, we get the simple exponential distribution

W(z|x,t) = 1 —exp(—T'(x)7) . (3.114)
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3 Stochastic Dynamics

In general the distribution of the PDP can be nonexponential due to deterministic
drift, and (3.113) should be integrated numerically for each trajectory. It should also
be noted that I, being a transition rate, is a nonnegative function, and the integral
in (3.113) therefore increases monotonically. When v — oo, the probability W
thus grows with time 7 until some constant value. If that value is 1, the system will
always perform a jump from the original state. However, if the value is smaller than
1, the state may become a trapping state in which the system stays indefinitely.

The waiting time distribution allows us to introduce a continuous time stochas-
tic simulation procedure for the PDP. Let us assume that the initial system state
is x at time . To obtain the next state we need to either propagate the system on
the basis of its dynamic set of equations or realize the jump process. The waiting
time distribution function W(z|x, t) allows us to determine the time required for
the deterministic propagation until the jump. For this purpose we draw a random
linearly distributed value # from the interval (0, 1]. We obtain the time 7 before the
jump from the solution of the equation

n = W(zlx,t). (3.115)

The solution is obtained by numerical simulation of the deterministic propagation
by calculating ¢ ,/(x) and at the same time calculating the integral in (3.113) until

/dsF(gbs(x)) =—In(1—7). (3.116)
0

When this equality is reached, the deterministic propagation is stopped, and the
jump process is realized. The jump process is realized stochastically according to
the set of rates k(x¢|x’), where x’ is the final point reached in the deterministic
propagation, and x¢ is the final point after the jump. The selection of the final state
xf is obtained by taking a linearly distributed random number.

By repeating these steps, we obtain the Monte Carlo algorithm for system dy-
namics. As we found before in this chapter, the stochasticity leads to relaxation
behavior in the master equation for probabilities or the Fokker—Planck equation.
The PDP represents a classical or even quantum relaxation algorithm, which can
be easily adapted to a particular physical system.

3.8
Langevin Equation and lts Relation to the Fokker-Planck Equation

In the previous section we described a process which is partially defined by the
deterministic equations, with their solutions interrupted by stochastic jumps. This
type of stochasticity can be embedded in the dynamic equations via external fluctu-
ating forces. Starting with (3.71), we can then postulate the dynamic equation

dx

I =+ Ew, (3117)

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c03 — 2013/6/3 — page 47 — le-tex

3.8 Langevin Equation and Its Relation to the Fokker—Planck Equation

where the function y(x) is the force vector depending on all dynamic variables
x = {x1%, ...}, and & (t) is the fluctuating force. Equation (3.117) is usually termed
the Langevin equation of motion. We will provide a more rigorous backing of the
Langevin equation in Section 8.2.

The fluctuating force introduces irreversibility in the dynamics as & is assumed
to be an irreversible function. Its functional form thus cannot be defined explicitly.
Instead, its moments are usually given. We assume that the force has zero mean
value

(&i(t)) =0. (3.118)

We assume & is completely random, and its timescale is much shorter than the
system dynamical timescale, so its correlation function is of the form

(&i(1)&;(0)) = QIi;0(t), (3.119)

where Q is the dispersion of the fluctuations. When all odd higher-order moments
vanish, and the even moments factorize into products of the second moment, the
stochastic force is denoted as the Gaussian noise (it should be noted that only
the first two cumulants are nonzero for the Gaussian process as described in Ap-
pendix A.2). The external force of this type is denoted as the white noise. Other
types of fluctuating forces will be described later.

The Langevin equation for the harmonic potential describes the relaxation of the
harmonic oscillator. Let us take, for example, a particle in a parabolic potential (the
case of the harmonic oscillator). The force is proportional to the displacement, and
we assume the Langevin equation

dx

dr
Without the stochastic force the solution is the exponential function Ae~7*. Thus,
taking x(t) = y(t)e™?*, we simplify the equation and can easily integrate it. For
initial condition x (¢ = 0) = xp, we get

=—yx+E(t). (3.120)

t
x(t) = xoe 7! ~|—fdre_y(t_f)§(r). (3.121)
0

This trajectory is not determined as long as & (t) is not given. However, using the
moments of the stochastic force, we can describe the statistical properties of the x
variable. The mean value is given by

(x(t)) = xoe 7" (3.122)

This result agrees with the solution of the Fokker—Planck equation presented in
the previous section which gives the exponential relaxation of the oscillator. The
dispersion is

(x = (x)))) = [ dr [ de/e 7@ T)(E(n)E(T)) (3.123)
[«]
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3 Stochastic Dynamics

Using (3.119), we get

((x — (%))} = E%(l——e_“”). (3.124)
2y

We can see that the dispersion is initially zero, and at later times it grows to a

stationary value equal to Q/2y . This result is also confirmed by the Fokker—Planck

equation (see (3.106) and (3.107)).

Here we found that the two lowest moments of the Langevin equation coincide
with the moments obtained by the Fokker-Planck equation. What about higher
moments? From (3.121) we observe that the function x(t) is a linear superposition
of &(t) at various times. Since the linear superposition of Gaussian variables is a
Gaussian variable, we conclude that x () is a Gaussian process. The Gaussian pro-
cess is completely described by its first two moments. As the first two moments
of the Langevin equation, (3.120), and of the Fokker—Planck equation, (3.84), coin-
cide, and they are both Gaussian processes, these two equations describe the same
process. Thus, the description of the process using both equations is equivalent.

The procedure described in this section can be generalized for an arbitrary fluc-
tuating system into the so-called Langevin approach. Here we just discuss the is-
sue, and for a more complete description the reader is referred to other textbooks
(e.g., [8]). The first step is to write the deterministic equations describing the drift-
related process or forces acting on the system. In the second step, the fluctuating
force can be added to describe the thermally induced fluctuations (or fluctuations
induced by some other means). In the third step, the strength of the fluctuations
has to be adjusted to properly reflect the equilibrium fluctuations on the basis of
either the experimental or the physical considerations (see Chapter 7).

This general approach may properly describe the dynamics but its connection
to the Fokker—Planck equation is not trivial. Note that in the example of the har-
monic potential the dynamic variable x was linear in fluctuating force &. For this
reason the dynamics of the variable was necessarily Gaussian, and this resulted in
an equivalence with the Fokker—Planck equation. In the general case, the forces in-
volved in the system may be nonlinear, and the equivalence relation to the Fokker—
Planck equation is not exact. So the linearity becomes the necessary condition.
Thus, for equations of the type

x = F(x)+ &(x), (3.125)

where F(x)is some nonlinear function, the equation is still linear in the fluctuating
force, and the relation to the Fokker—Planck equation

2
o _ 0 Qo

5% = —5( (x)p) 3 9x2 (3.126)
can be established.
However, equations of the type
% = F(x) + G(x)&(x) (3.127)
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3.8 Langevin Equation and Its Relation to the Fokker—Planck Equation | 49

are intrinsically nonlinear in the fluctuating force, and the general connection with
the Fokker—Planck equation cannot be exactly established because the x(t) trajec-
tory is not Gaussian. Further examples in this book are not related to these types
of nonlinear equations, so we do not discuss this issue in more depth. The reader
interested in this topic may consult specialized textbooks (e.g., [8]).
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4
Quantum Mechanics

In this chapter we review the basic concepts of quantum mechanics. We will
start with the Schrodinger equation, which defines reversible behavior of a closed
quantum system. This fundamental equation introduces eigenstates and the cor-
responding eigenvalues (energy spectrum) of the system. These quantities play
an important role in the representation of various quantum states and quantum
dynamics among them. We also introduce the density matrix, which is widely used
for the description of system dynamics. Some typical examples of general interest
will be presented for demonstration purposes. The perturbative scheme, which is
especially important for considering the influence of an external impact on the
system, will also be discussed. Finally, special attention will be paid to the effects
caused by an external electromagnetic field. However, we will not discuss here all
the inconsistencies in observations with classical mechanics and electrodynamics,
which itself is very interesting. Some aspects of this issue will be considered in
Chapter 6. Over recent decades many textbooks describing quantum mechanics at
different levels have been written, and are recommended for further reading [11—
16].

4.1
Quantum versus Classical

As follows from Chapter 2, classical physics is based on two fundamental concepts:
the concept of a particle, which behaves in accordance with Newton’s laws, and the
concept of an electromagnetic wave, which describes an extended physical entity.
Both of these concepts are inseparable when considering some experimental ob-
servations of radiation interacting with matter and some constituents of matter
(atoms, molecules, etc.). In order to explain black-body radiation (Max Planck), the
photoelectric effect (Albert Einstein), and the Compton effect (see, e.g., [11, 13, 14],
for details) a new concept of photons as particles of the electromagnetic field was
developed. However, this new concept had to reconcile with the wavelike proper-
ties of electromagnetic radiation. The principle of duality was later postulated in an
attempt to come to terms with the classically irreconcilable dual character of obser-
vations in the microworld. This principle of duality was postulated to be also ap-
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4 Quantum Mechanics

plicable to particles of matter (Louis de Broglie) [12-14]. The common relationship
between the particle momentum p and its wavelike characteristics, wavelength 4,
was defined as

A=, 4.1
» (+1)

where h = 6.626 x 1073*] s is the Planck constant. This wavelength is now usually
called the de Broglie wavelength of the quantum particle. Many subsequent experi-
ments supported this relationship demonstrating that electrons, protons, neutrons,
atoms, and even molecules have wavelike properties. The conceptual implications
of these properties are best explored by considering the two-slit interference exper-
iment, which will be described in Chapter 6.

The dual properties of light and matter, that is, the wavelike properties and the
particle-like properties, cause the uncertainty relationship between the position and
the momentum of the system under consideration (Werner Heisenberg). Indeed,
the degree of uncertainty of the position of the particle along a particular direction,
Ax, should be connected with the level of uncertainty of the projection of the mo-
mentum along the same direction, Ap,, in accord with the Heisenberg uncertainty
principle:

AxAp, ~ h. (4.2)

This relationship follows directly from (4.1) for a freely moving particle. It asserts
that greater accuracy in position is possible only at the expense of greater uncer-
tainty in momentum, and vice versa. Indeed, according to the Heisenberg uncer-
tainty principle, precise determination of the position of a particle, Ax = 0, is only
possible with infinite uncertainty of the momentum Ap,. Thus, the inferred prop-
erties of a quantum particle depend on the experimental conditions. The relevant
discussion of this issue is given in Chapter 6.

In order to fulfill the requirement of the duality principle, quantum system be-
havior does not follow the requirement of classical mechanics, where the position
of a particle, x(t), is defined at any given time, t. In this case the position of the
particle and its momentum should correspond to the Heisenberg uncertainty prin-
ciple. In order to take this aspect of duality into account in quantum mechanics, all
measurable physical properties are attributed to corresponding mathematical op-
erators according to the so-called correspondence principle, while the system state
(and its time evolution) is attributed to a vector from a mathematical vector space,
where these operators act. In the so-called coordinate representation, the particle
coordinate operator coincides with its coordinate r, and the momentum operator is
defined as p = —ihV, where i = h/2x is the reduced Planck constant. Thus, the
projection of the momentum in a particular x direction is p, = —ihd/dx. In this
representation, the state vector coincides with a complex function of coordinates
and time, the so-called wavefunction. Similarly to momentum and the coordinate,
the Hamiltonian of the quantum system, defined as the sum of kinetic and po-
tential energies, can also be attributed to its corresponding operator. According to
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4.2 The Schrédinger Equation

the definitions of the kinetic energy given in Chapter 2, it is directly related to the
momentum operator,
ﬁz hZ VZ

T=1_=—
2m 2m

, (4.3)

and the potential energy is the corresponding function of the coordinate. The un-
certainty between two measurable quantities is reflected in the commutational re-
lationship between the corresponding operators. In the case of coordinate ¥ and
momentum p, it gives the following result:

[Q,px]EXﬁx—ﬁxeih. (4_4)

4.2
The Schrédinger Equation

Quantum mechanics can be formulated in terms of a set of postulates. For the
dynamics, the most important postulate is the one prescribing the time evolution
of a quantum system in a state defined by a wavefunction ¥ (x, t). It postulates that
the wavefunction should satisfy the Schrodinger equation:

m%wwn:ﬁwwn, (4.5)
where H is the Hamiltonian of the system under consideration and the variable (a
set of variables) x usually represents the coordinates of the system (the wavefunc-
tion can, however, also be represented in terms of different variables, such as mo-
mentum). An unambiguous solution of (4.5) is defined for fixed initial conditions
of the wavefunction ¥ (x, to). The Hamiltonian H is the operator corresponding to
the total energy of the system under consideration. The wavefunction encapsulates
the wavelike properties of the quantum system, and it determines the probability
amplitude for finding a system in a particular state. Thus, ¥ (x, t) can be a sta-
tionary waveform or a localized wavepacket reflecting dual properties of quantum
systems. As we show later, the wavefunction is related to the probability of the sys-
tem being observed in certain states, that is, |¥ (x, t)|* determines a probability
density in accord with the so-called Born rule. More details on this issue are given
in Chapter 6.

The time evolution of the quantum system can be represented as the evolution of
the elements (state vectors) in the so-called Hilbert space. As we show later, the time
evolution of a closed system is the pure phase rotation. The action of an operator
on the vector causes the displacement of these elements in the Hilbert space. The
wavefunction introduced above is a particular representation of the state vector de-
fined by the eigenstates of the coordinate operator. So (4.5) should be understood
as the coordinate representation of the Schrédinger equation and is a linear differ-
ential equation. With the following ansatz

V(x,t) = p(t)e(x), (4.6)
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and assuming that the Hamiltonian is independent of time, we can separate it into
two equations for the time and space variables. In this way we obtain an eigenvalue
equation (the stationary Schrédinger equation),

Ho(x) = Eg(x) , (+7)

for the spatial wavefunction ¢(x). Here E being a number is the eigenvalue and
¢(x) is the eigenfunction of the Hamiltonian H. Usually, (4.7) determines a set of
eigenvalues E, together with corresponding eigenfunctions ¢, (x); the numbers n
become a set of quantum indices or quantum numbers. For v () we have

dy
4 = Ev. (4.8)

i
This can be solved for known values of eigenenergies E,. So, one particular so-
lution of the Schrédinger equation is exp(—iE,t/h)@,(x), and the complete wave-
function is then defined as a linear superposition of these particular solutions:

Pe(x, 1) = Y cne HElp,(x) . (4.9)

It is noteworthy that the eigenfunctions of any operator compose a full basis
set. As a result, an arbitrary wavefunction ¢ (x, t) of an arbitrary system can be
expanded via this (or any other) set of eigenfunctions:

P, t) =Y du(t)pu(x) , (4.10)

where the time evolution can be embedded in the coefficient d,,(t) = d,e™" hEnt
and d, is a corresponding expansion coefficient. This is the outcome of the so-
called superposition principle. Evidently, in the case of the continuous spectrum of
energy E, (4.10) corresponds to

W, (x,t) = /c(E)e—%EtcpE(x)dE. (4.11)
The Schrédinger equation (4.5) defines the “shape” of the wavefunction, but does

not define its amplitude. So the wavefunction can be chosen to be additionally
normalized, so

/gp,f(x)gon(x)dx =1. (4.12)
In that case the eigenfunctions of the Hamiltonian form an orthogonal and nor-

malized (orthonormal) set with respect to the scalar product defined by the integral
over the variables x:

[%T(X)M(X)dx = Oum - (4.13)
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4.2 The Schrédinger Equation

Here (and further on) the asterisk denotes the complex conjugation. The coeffi-
cients of the decomposition

P(xt) =) ca(t)gn(x) (4.14)
are then
eult) = / oF (X (x, Hdx (4.15)

and according to the standard interpretation of quantum mechanics, the square
of the expansion coefficient |c,(t)|* defines the probability of finding the system
in the corresponding nth quantum state. As the wavefunction corresponding to a
given state is itself a representation of the state in the basis of the eigenstates of the
coordinate operator, the values ¢, (x) are thus the “coefficients” of this representa-
tion. |, (x)|? then determines the probability density for finding the system which
is in the nth eigenstate with the value of the coordinate equal to x. More details on
the interpretation are given in Chapter 6. This is denoted as the Born rule for prob-
ability. According to such an interpretation, the wavefunction itself is a probability
amplitude, and has no direct physical meaning (in the sense of being measurable).
While the probability density is real and nonnegative, the wavefunction is complex.

As denoted above, the operators act on wavefunctions and create new wavefunc-
tions:

Fop(x) = p(x) . (4.16)

The operators usually represent some physical quantities. The operators are taken
as linear. The normalized wavefunction allows one to determine the values of the
outcomes of a repeated experimental observation of a system in a particular quan-
tum state. This so-called expectation value (F) associated with the operator F for a
system in a given state ¢ (x) is defined as

F=(F)= /dx¢*(x)ﬁ¢(x). (4.17)

This is usually termed the Born rule as well. We can also introduce the action of an
operator to the left by ¢ (x)F = FT¢(x), where FT denotes the transposed operator.
For an arbitrary operator the expectation value can be complex. We can thus write

(F)* = / dx¢(x)(Fg(x)" = / dx¢*(x)FTg(x) . (4.18)
Operator F1 is denoted as the conjugate operator to operator F. From the equation
above we can write

(FT)* = FT. (4.19)
As the expectation value of the physically measurable quantity must be real,

F=Ft, (4.20)

Such operators always have real expectation values and are denoted as the Hermi-
tian.
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4.3
Bra-ket Notation

Many quantum mechanical expressions can be greatly simplified by adopting the
Dirac bracket notation. In this notion, the fact that the wavefunction ¢, (x) of
state n in the coordinate representation is a representation of an abstract state vec-
tor |n) in the bases of the vectors corresponding to different values of x is repre-
sented by

on(x) = (x[n), (4.21)

Here bra-ket (x|n) represents a scalar product of two vectors, |x) and |n), both
defined on an abstract Hilbert space. The part |n) of the bra-ket is the so-called ket
vector. Similarly, (n| is the so-called bra vector, denoting the conjugate state in the
scalar product. For the wavefunction, the conjugation corresponds to the complex
conjugation. More propetly |n) = ({n|)T, and because the scalar product is a num-
ber, we have (x|n) = (n|x)*. The scalar product (x|n) denotes the projection of
vector |n) on vector |x) in the Hilbert space.

According to these notations, the integral of two wavefunctions can be expressed
as follows:

(bla) = / o (¥)¢a()dx (4.22)
And similarly,
(b|Fla) = / o7 (%) E (%) pa(x)dx . (4.23)

On the left-hand side of these expressions we have abstract notation for which the
wavefunctions do not have to be expressed in the coordinate representation. For
normalized state vectors we have

(ala) =1, (4.24)

which means that the elements (vectors) are determined by their direction in the
Hilbert space but not by their amplitude.

The eigenfunctions of Hermite operators representing physical observables are
orthogonal to each other (unless the eigenvalues are degenerate), which means
that the overlap factor is zero. The orthonormal set of eigenfunctions should then
satisfy the following conditions:

(m|n) = Omn . (4.25)

Since the eigenfunctions of any operator compose the full set, any vector |a) in the
Hilbert space can be projected onto this full set, thus giving

la) =) [n)(nla), (4.26)
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where (n|a) determines the projection of vector |a) onto vector |n). Similarly,
(xla) = D (xIn)(nla) . (4.27)

The latter equation connects wavefunctions in different representations. If the
wavefunctions are normalized, that is,

/(a|x)(x|a)dx = /(n|x)(x|n)dx =1, (4.28)
we will get

(ala) =) (aln)(nla) =1, (4.29)
or otherwise

don)nl =1, (4.30)

where [ is the unity operator. Equation (4.30) demonstrates the completeness of
the wavefunction set.
Direct generalization of (4.30) can be used for representation of any operator F:

ﬁ = Zan|n)<m

: (4.31)

where F,,, is the matrix element of operator Fina particular representation.

4.4
Representations

4.4.1
Schrédinger Representation

The above formulation of quantum mechanics is termed the Schrédinger repre-
sentation. A formal solution of the Schrédinger equation, (4.5), can be given by

W(x,t) = Ut, to) ¥ (x, to) , (4.32)

where U(t, to) is the so-called evolution operator, which satisfies the following ini-
tial condition:

Ulto, to) = 1. (4.33)

From normalization conditions it follows that the evolution operator has to be a
unitary operator since

(Ow|0w) = (w|UT0w) = (v |¥) . (4.34)
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Indeed, inserting (4.32) into the Schrédinger equation, (4.5), we get
dU(t, to)
ot

In the case of a time-independent Hamiltonian the solution can be formally ex-
pressed by the evolution operator

in = HU(t, t) . (4.35)

Ut to) = e~ H A=) (4.36)
and the wavefunction is
W(x,t) = e R HEOW (i 1) (4.37)

In the case of a time-dependent Hamiltonian it follows from (4.35) that
Utto—l——/H U(, to)d (4.38)
This integral relation can be solved iteratively. The first iteration of (4.38) gives

Ut tg) =1 — %/ H(r)dr

+ (——) /dr/drl 1) H(11) U(T1, 1) , (4-39)

and applying further iterations, we get

U, to) = +Z(——) /drnfdrn .. /drl

x H(t) H(Ty—1)... I:I(rl) , (4.40)

with time ordering: tp < 73 < --- < 7,1 < 7,. By analogy with the definition of
an exponential function, it can also be represented symbolically as

Ut to) = expy —%/dﬂ:l(r) . (4.41)
Similarly, the Hermitian conjugated operator can also be defined accordingly:
Ut (t, to) = exp_ /drH . (4.42)

Evidently, in the case of the time-independent Hamiltonian the evolution operator
and its conjugated operator coincide with the evolution operator given in (4.37) and
its conjugated operator.
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4.42
Heisenberg Representation

In the Schrodinger equation considered so far, the time evolution of the system is
reflected in the wavefunction. However, the time evolution can also be relocated
from the wavefunction to the operators, resulting in the so-called Heisenberg rep-
resentation. This can be achieved by means of action of the evolution operator on
the wavefunction in the Schrédinger representation:

Wy(x) = UT(4)Ws(x, 1), (4.43)

where Ws(x,t) is the wavefunction in the Schrédinger representation as defined
by (4.32). Correspondingly, ¥}(x) is the wavefunction in the Heisenberg repre-
sentation and it is time-independent. Evidently, any operator should also be trans-
formed by means of the evolution operator accordingly, giving

Fu(t) = UT () FU(1) . (4.44)

The operator Fyy(t) is thus the operator F in the Heisenberg representation, and it
is now time-dependent. Since UT(0) = U(0) = 1, we get

A

Fu(0) = F, (4.45)

which means that operators in both representations coincide at some chosen initial
time. From (4.44) it follows that the time evolution of the operator Fyy(t) over a short
period of time At can be given as

Fu(t + At) = UT(At)Fu(t) U(AY) . (4.46)

Assuming that the Hamiltonian of the system is time-independent, and expanding
the exponent in (4.36), we get

i

h[I—}, Fu(t)At + ... (4.47)

Fu(t + At) = Fy(t) +
From this equation it follows that

dd% = é[FH, H]. (4.48)

The equation obtained allows us to conclude that operators which commute with

the Hamiltonian are time-independent in the Heisenberg representation. Since

operators in the Schrédinger and Heisenberg representations coincide at t = 0,

it is evident that the operators commuting with the Hamiltonian are the same in

both representations. As a result, the Hamiltonian of the system is the same in
both representations.
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4.43
Interaction Representation

Let us consider a situation in which the Hamiltonian of a system can be represent-
ed as a sum of two terms:

H = Hy(t) + H'(t) . (4.49)

If we invoke the definition of the evolution operator given in (4.35), the evolution
operator for the system defined by Hamiltonian Hy(t) should satisfy the following

equation of motion:
J A iaa
37 Yot t0) = =2 Ho(#) Uo(t, o) - (4.50)

The solution of this equation can be given in terms of a corresponding evolution
operator, (4.40):

i
Uo(t, to) = expy —%/dﬂ:lo(r) . (4.51)
t

0

Let us define the wavefunction in the interaction representation, ¥(t), via the
following relation with the wavefunction in the Schrodinger representation, ¥s(t):

() = U(t, to) Ph(t) - (4.52)

By inserting this relation into the Schrédinger equation, (4.5), we get the equation
of motion for ¥(t) in the form

9 P
L) = —%Hll(t)‘l’l(t), (4.53)

where
ALt = Ty (8 to) ' (1) T2, 1o) - (4.54)

Similarly to (4.32), let us now define the evolution operator U(t, to) describing the
solution of (4.53) as

wi(t) = Ui(t, to) Wi (to) - (4.55)

Evidently, the evolution operator Uy (t, t,) should satisfy the equation of motion with
Hamiltonian, (4.54):

J A s A
5 Uit t0) = — F () D, o) (4.56)
By analogy with (4.35), it follows that

t
Ui (t to) = exp. —%/drﬁf(r) : (4.57)
to
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Taking into account definition (4.52), we get

A

ws(t) = Uo(t, to) Pi(t) = Uo(t, to) Uit to) Wi (ko)
= Us(t, to) Ui(t, to) s to) , (4.58)

because P(ty) = Ws(to). From comparison with (4.32), it follows that
. t
A N A A 1 A
U(t, to) = Uo(t, to) Ti(t, to) = Uio(t, to) expy. —Efder(r) . (459)
to

or more explicitly

0o . " t Tn T2
U(t, to) = ﬁo(t, to) + Z (—%) /d‘[n / dr,—1 .../d‘[l
to to to

n=1

x Uo(t, To) H(72) Uo(Tn, Tue) HY (Tp—1) - ..

x Up(t2, 1) HY(11) Up(71, to) - (4.60)

Thus, both wavefunctions and operators are time-dependent in the interaction
representation. The time dependence of the latter is defined by analogy with (4.54)
for any operator F in the Schrédinger representation by the following relation:

Fr = UG (¢, to) F Un(t, to) . (4.61)

Similarly to (4.48) derived in the Heisenberg representation, operator Fj in the
interaction representation should satisfy the following equation:

dEi(t) 17, -
T [FI,H] . (4.62)

All representations described in this section are equivalent to each other. They
should be used depending on the convenience they provide in the search for the
solution of the problem under consideration.

4.5
Density Matrix

4.5.1
Definition

The wavefunction introduced above is not an experimentally observable physical
entity. Its square determines the probability density for finding a quantum me-
chanical system in some associated state. It is possible to construct a quantity, the
so-called density matrix, which operates directly with the notion of the “square”
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of the wavefunction and has therefore a more direct interpretation. The density
matrix provides an alternative description of a system state. Formally, the densi-
ty matrix represents the so-called density operator. The main advantage of such a
representation of the quantum system is due to the possibility to encompass statis-
tical ensembles beyond those of identical molecules assumed in the probabilistic
interpretation of the wavefunction.

Let us assume that the system is characterized by a wavefunction ¥ defined in
the basis set of wavefunctions ¢,:

W(x) =) capu(x). (4.63)

The probability of finding the system in the state characterized by the wavefunction
¢y is given by ¢ c,. The expectation value (A) of an operator A for a system in
state ¥ is given by (4.17) or in the chosen basis of ¢, functions,

(A) =" Amncucs, (4.64)
where
A= [ a0 A0 () (4.65)

It follows from (4.64) that the expansion coefficients ¢, of the system state are
the only thing necessary to calculate the expectation value of a physical quantity,
once the operator is represented in a given basis, that is, A, is known. Thus, a
quantity which holds these coefficients can be defined,

Pmn = CmCh (4.66)
and the expectation value (A) can be expressed as

(A) =" Apnpum - (4.67)

The quantity py,,, is termed the density matrix.

Equation (4.67) has a structure of a trace over a matrix obtained by multiplication
of the density matrix and the matrix representation of the operator A. We can thus
alternatively present (4.67) as

(A) = tr{Ap} . (4.68)

The trace operation on an arbitrary operator can be defined in an abstract way
for operators acting on any Hilbert space. Equation (4.68) suggests that p is an
operator, which could also be represented in an abstract Hilbert space. The density
matrix is thus just a representation of the abstract density operator in a specific
basis. The basis can be discrete or continuous.

The interpretation of the density matrix elements in the discrete representation
is rather straightforward. According to the Born rule, the diagonal elements p,, =

I
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|cu|? represent the probabilities (or probability densities) of finding the system in
a state characterized by the wavefunction ¢, . The off-diagonal elements p,,,, often
denoted as coherences, represent the coherence between states ¢, and ¢, that is,
the degree to which the state ¥ of the system is a linear combination of ¢,, and
¢n. In some sense this is the degree of interference of the system between these
states. Because the diagonal elements represent probabilities, their sum has to be
normalized to 1. We can thus introduce the general normalization condition for
the density matrix:

Y o =tr{p} =1. (4.69)

The density matrix in a continuous coordinate representation has a form anal-
ogous to (4.66), that is, p(x’, x) = ¥ (x')¥™*(x). The diagonal “elements” of this
continuous density matrix are p(x, x)dx = |¥(x)|>dx, and they therefore repre-
sent the probability density for finding the system in the interval dx around coordi-
nate x. It is normalized accordingly as [ dxp(x, x) = 1, and the expectation value
of the operator is

(A) :/ dxdx’Aep(x, x') . (4.70)

Here it is important to note that in the coordinate representation the operator has to
have the form A/, = 0(x—x’)A(x). The Dirac delta function is required for (4.70)
to be equivalent with (4.17).

The density matrix can be equivalently presented in bra-ket notation. Consider
the system described by a wavefunction v (x), which can also be denoted by |y).
The density matrix is then given by

p=1v)yl. (+.71)

The state can be expanded in another basis |a) as [) = Y, cq|a). Now the product
with the conjugate wavefunction according to (4.71) gives the density operator:

p=Y_cicyla)(b|. (4.72)
ab

Thus, in this basis set p,, = c4cj, which is equivalent to (4.66).

The main properties of the density matrix follow from its definition: p,, =
|ca|? is the probability with normalization Y_, psa = 1, pap = pj,, and |pap* =
[cal?lch)? = paappp. The density operator clearly does not carry more information
than the wavefunction as described above. Instead, it often disregards the auxiliary
unobservable information from the wavefunction. Its advantage becomes apparent
when considering statistical ensembles.

45.2
Pure versus Mixed States

In the usual interpretation of quantum mechanics, the wavefunction, (4.63), repre-
sents a system in state ¥ and all properties of the system are thus defined. How-
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ever, when preparing an individual system for measurement, there might be some
uncertainty in the states in which the system is actually prepared. One might pre-
pare states 1, and 1, with probabilities p, and p,. The state of the system is no
longer a linear superposition of states 1, and 1}, but is rather “in state 1, or state
1 with certain probabilities,” which is denoted as a statistical mixture. The differ-
ence between these two situations is a lack of coherence between states vy, and ),
in the latter case.

It turns out that the density operator in such a scenario is completely determined.
Adding two wavefunctions automatically introduces the coherence, but adding two
density operators (weighted by the probabilities of finding systems with the corre-
sponding states) does not. Thus,

p="3 palvra) (vl (4.73)

n=a,b

correctly describes a statistical ensemble of system states prepared in either
state 1, or state 1),. We can verify that the expectation value for operator A is
defined consistently as a sum of expectation values for states 1, and 5:

(A) =tr{pA} = Y pulyulAlyy) . (4.74)
n=a,b
The physical quantity in this case is well defined, and the system is described by a
statistical ensemble of wavefunctions. We will describe statistical ensembles more
extensively in Chapter 7. States that are represented by a single wavefunction are
called pure states, and states that cannot be written as a single wavefunction and re-
quire a density operator for their characterization are called mixed states. The mixed
states represent ensembles. This does not imply the existence of physical replicas
of the system under consideration, but instead describes the limited knowledge of
the system state.
To distinguish the pure and mixed states from each other formally, we can use
the following inequality:

tr{p?} <1, (4.75)

which holds for a mixed state. It is easy to show that the pure state p = |y)(y| has

oy = Y oul ) (Wlen) = (wly) =1 (4.76)
as a result of the normalization conditions for the wavefunction. In a mixed state
p =Y, pup™, where p™ = |y,)(1,| are some density operators representing
(different but not necessarily orthogonal) pure states, the probabilities have to sat-
isty >, p» = 1. From this it follows that

tr{p’} = pupbmtrip™p™} <> pupm =1, (4.77)
because
tr{p"p!™} = [(Yulpm)> < 1. (4.78)
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4.53
Dynamics in the Liouville Space

The Schrédinger equation, (4.5), describes quantum dynamics of a system wave-
function:
d|v) N
ih—L = H|¥ 4.79
i<t = Alw) (4.79)
where H is the total system Hamiltonian, given by the sum of kinetic and potential
energies. For the time-independent Hamiltonian the formal solution, (4.37), reads

| ¥ (t)) = exp (—%I:It) [ (0)) . (4.80)

The Hermitian conjugate equation for the wavefunction can also be defined, and it
reads
¥ N
ih— = —(¥|H. 4.81
S = (v (481)
With use of these definitions it is straightforward to write the equation for the
density matrix of the pure state:

d d A N N
ih—p=ih—|Y)(¥|=Hp—pH=[H,p]. 4.82
1dtpldt|><| p—p [H, p] (4.82)

Expanding the equation in some basis set, we get
., d
lhapab = XC:(Hacpcb - pachb) . (483)

Let us assume that the system eigenstates are |¢,) with energies ¢,. We then
have for the Hamiltonian and the density matrix in this basis set H,, = d4,¢, and
P = pap, and from (4.83) we get

., dpa

ih th = (£a — £5)Pab » (4.84)
and the solution

Pap(t) = €79 0,1 (0) , (4.85)

where w,, = (€, — €p)/h describes the unitary evolution of the density matrix,
which is simply the phase rotation of coherences. As the state is stationary, the
probabilities are time-independent, p,, = const.

It is sometimes convenient to introduce a different notation with respect to the
density matrix dynamics. In (4.83) both the density matrix and the Hamiltonian are
square matrices. We can reorganize elements of the density matrix into a single row
and assume it to be a vector. We can write (4.83) in the form

d

3P = —i%: Labcaped » (4.86)
[
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or without specifying the basis set simply as dp/dt = —iLp, where the superopera-
tor £ acting on operator p is introduced. In this so-called Liouville representation, the
possible density matrices are vectors in the Liouville space, that is, we treat each
regular operator, in our particular case the density matrix, as a vector, and the su-
peroperators, which are the tetradic matrices in a regular case, operate on these
square-matrix operators.

Two types of superoperators are the most important. The Liouville operator is a
construct out of the system Hamiltonian. For the arbitrary orthogonal basis set we
have Lypcq = HH(OpaHae — 840 Hyp). For the expansion in Hamiltonian eigen-
states, the Liouville operator becomes diagonal, that is, L4 = @W4,04:0p4. The
second important superoperator is the propagator, or the Green’s function for the
density matrix. It is the time-domain forward propagator. The time evolution of the
wavefunction can be expressed as |¥(t)) = G(t)| ¥ (0)), where

G(t) = 6(t)exp (—%I:It) =0(t)0(t), (4.87)

and 0 (t) is the Heaviside step function, which is equal to 1 for positive times and 0
for negative times. The operator G(t) is often called a Green’s function, and it coin-
cides with the evolution operator defined by (4.37), when considering the forward
propagation in the time domain. In the Liouville space according to (4.86), the for-
mal solution of the Liouville equation for the time-independent Liouville operator
is p(t) = exp(—iLt)p(0). Similarly to the Hilbert space, the Liouville space Green's
function is defined by forward propagation of the density operator p(t) = G(t)p(0),
where

G(t) = O(t) exp(—iLt) (4.88)

is the formal expression of the Green’s function. These types of superoperators will
be used later in this book.

4.6
Model Systems

4.6.1
Harmonic Oscillator

The classical harmonic oscillator is the model describing the motion of a particle
in a harmonic potential (Figure 4.1):

V(x) = —x%, (4.89)
where k determines the strength of the restoring force and x is the coordinate of

the particle. The classical dynamics of this oscillator was described in Section 2.1.3.
We now consider the quantum case.
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Figure 4.1 Low-lying energy levels of a particle in a one-dimensional harmonic potential V(x).
Wavy curves represent the eigenfunctions, the dashed lines — the eigenenergies.

In the case of a one-dimensional harmonic oscillator, the coordinate describes
the motion along this particular coordinate. The Hamiltonian of such a system
reads as follows:

hz dZ

H = —ﬂw + V(x) . (490)

2

By introducing the notation k = mw?, we can rewrite the Schrédinger equa-

tion, (4.7), as

W dPp(x) | mo?

2m  dx? 2

x2p(x) = Eg(x) . (4.91)

Introducing also the dimensionless coordinate § = /mw/hx and energy ¢ =
E/(hw), we get

dZ
(d—gz - 52) o(&) = —260(E) . (4.92)

This is now a second-order differential equation with ¢(&) representing the desired
wavefunction, and ¢ representing the corresponding energy of the oscillator.
We will solve (4.92) by first noting that

d d . @
(s ; @) (s - ﬁ) o(&) = (s m 1) o(&). (4.93)

which can be used to rewrite (4.92) as

d d
(e;-' ; ﬁ) (& - ﬁ) o) = (26 + 1)(&) . (4.94)
Similarly we obtain
d d
(e;-' - @) (e;-' ; ﬁ) o(&) = (26 — 1)g(£) (4.95)

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

Chap. c04 — 2013/6/3 — page 68 — le-tex

68 | 4 Quantum Mechanics

Thus, the wavefunction satisfies both (4.94) and (4.95). If we now take (4.94) and
act on the left with operator & — d/d&, we have

-2) 2 e

d
=2 +1)— 1] (E - E) o(&). (4.96)

that is, the function

d
b4 (E) = (& - @) o&)

is the wavefunction with energy ¢ + 1. Using (4.95), we can show that

d
(&) = (5 ; ﬁ) o(&)

is the wavefunction with energy ¢ — 1. Thus, any wavefunction corresponding to
eigenvalue ¢ can be constructed when the “first” wavefunction is found.

The first wavefunction may be obtained from (4.94). Taking ¢ = —1/2, we get
the requirement

d
(e’; - —) p(§)=0. (4.97)
It is easy to verify that
(&) = Ae2, (4.98)

where A is the normalization constant, is the solution of (4.97). However, this solu-

tion is rejected because it does not satisfy the boundary conditions, ¢(§) — 0 when

& — £00, needed for the normalization requirement of the wavefunction.
Equation (4.95) can be satisfied if ¢ = 1/2 and

d
(5 ; E) o(&) =0 (4.99)

at the same time. In this case the differential equation has the solution
o(E) = Ae=E12 (4.100)

which represents an acceptable eigenfunction because it satisfies the boundary con-
ditions.

Let us try to find a wavefunction which corresponds to an energy lower than
e = 1/2. We will try

_ 4 —en_
¢—(§)—(§+d§)e =0,
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which means that states with lower energy are not possible. Therefore, the eigen-
state defined by (4.100) and the corresponding eigenvalue determine the oscillator
ground state, that is, we can denote them by ¢, (&) and &.

To determine the wavefunction ¢, (&) of the excited states characterized by quan-
tum number n we will use (4.94) and apply operator (§ —d/d&) as described above.
The discussion above shows that operator (§ —d/d§) is an energy-raising operator.
When this operator acts on eigenfunction ¢, (&) corresponding to eigenvalue &,
eigenfunction ¢, (&) with eigenvalue ¢, is created. Thus, starting with (4.100),
we can generate the rest of the states of the harmonic oscillator. The first excited
state is given by

d
06 =41 (&= 5z ) wolé) (.101)
and &1 = 3/2, and the second excited state is defined accordingly:
d 2
Pa(8) = Az (& - ﬁ) vo(&) (4.102)
and &, = 5/2. Similarly,
d n
o6 = An (£ 35 ) i@ (4.103)

and ¢, = n + 1/2. Coefficients A, are normalization factors.
Wavefunctions for an arbitrary n can be explicitly defined via Hermite polynomi-
als,

H, (&) = (—U”egzddgn e, (4.104)
as

0u(E) = Ny H,(E)e 52, (4.105)
where

Ny = e (4.106)

VA anl2n

accounts for the normalization.
Let us now apply operator (§ + d/d&) to both sides of (4.95) to give

d d d d
(5 ; ﬁ) (s - ﬁ) (s n ﬁ) onlE) = 260 — 1) (5 + §) onlE)

(4.107)

By comparison with (4.94), we can conclude that (£ 4+ d/d&) is the energy-lowering
operator.

We thus find that the energy states of the harmonic oscillator form a ladder with
equal energy gaps. This is one of the most important results, allowing one to intro-
duce the particles — bosons — and their number operators. This so-called second-
quantization procedure is introduced in Section 4.9.
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4.6.2
Quantum Well

Let us consider the one-dimensional quantum well shown in Figure 4.2. The po-
tential energy for the quantum particle in this well is defined as

V(x) = (4.108)

0, if 0<x<a,
oo, otherwise .

The quantum particle in the quantum well is completely free, except at the two
walls, which confine the particle. The Hamiltonian of a free particle is equal to the
kinetic energy, T = p?/(2m), defined in Chapter 2. The momentum operator in
quantum mechanics is p = —i#V [2, 15]. Thus, the Schrodinger equation, (4.7),
inside the one-dimensional well reads

n* d*e(x)

S 2m dx?

where m is the mass of the quantum particle. A general solution of this equation
can be found in the form

¢(x) = Asinkx + Bcoskx , (4.110)

where k = /2mE/h?, and A and B are arbitrary constants, which should satisfy
the boundary conditions of the well and the normalization of the wavefunction.
Since the wavefunction at the walls should be zero, that is, ¢(0) = ¢(a) = 0, it
follows that B = 0 and the wavefunction, (4.110), is given by

= Fo(x), (4.109)

¢(x) = Asinkx . (4.111)
From the boundary conditions it follows that sin ka = 0 and thus
ka =0, +m +2m +3m, ... (4.112)
This allows us to determine k as
an
k, = 2" (4.113)
a
with n = 1,2,3,... and hence the possible eigenvalues of E,:
wh?n?
Ey=—— (4.114)
2ma?

By taking into account the normalization conditions for the wavefunction, we can
define the amplitude A accordingly:

Pn(x) = \/gsin(nzx) : (4.115)

The wavefunctions obtained determine quantum states which satisfy the condi-
tions of standing waves in this well. The state with n = 1 has the lowest energy
and it represents the ground state. States with higher energies proportional to n?
are excited states. The eigenfunctions corresponding to different values of n are
orthogonal to each other.
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Figure 4.2 Low-lying energy levels of a particle of mass m in an infinite square-well potential
V(x) with width a. Wavy curves represent the eigenfunctions, the dashed lines — the eigenener-
gies.

4.6.3
Tunneling

The ability to penetrate the barrier, which is classically forbidden, is one of the
exceptional properties of a quantum particle. To demonstrate this, let us consider
a free particle moving in a one-dimensional space and interacting with a potential
barrier, which determines the following potential energy (see Figure 4.3):

0, —o0o<x<0,
Vix) =1V, 0<x<a, (4.1106)
0, a<x<o00.

If a classical particle is approaching this barrier from the side of negative x values,
it is reflected if its kinetic energy is below V;, and it is transmitted in the opposite

ReV(z)

a

Figure 4.3 Penetration of a quantum particle through a potential barrier of height V, and
width a. The spatial distribution of the real part of the wavefunction of the particle initially posi-
tioned on the left side of the potential barrier with energy E = 1/2V; is also shown.

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

71

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

72

Chap. c04 — 2013/6/3 — page 72 — le-tex

4 Quantum Mechanics

case. In general, the behavior of a quantum particle of mass m in the presence of
potential V(x) should satisfy the Schrédinger equation:

Kt *W

— e T VY =BV (4.117)

In order to demonstrate the tunneling effect, let us consider the possibility of reflec-
tion and transmission of an incoming particle by the barrier in the case when the
particle energy E is lower than V;. The stationary Schrédinger equation in regions

—00 < x <0and a < x < oo corresponds to the free particle case:
A2y,
— =k, 4.118
dx2 k ( )

where k determines the eigenenergy, E = h2k?/(2m). The general solution of this
equation can be represented by free particle states:

W, = Aelt* 4 Be ik¥ (4.119)

where A and B are arbitrary constants.
In the region 0 < x < a the energy of the particle is classically forbidden since
E < Vj. In this case the stationary Schrédinger equation can be given by

vy,
dx?

=%, (4.120)

where Vy — E = #2y?/(2m). The general solution in this case is as follows:
W, = Ce™"* 4 Del* (4.121)

with arbitrary constants C and D.

In order for the wavefunction to be smooth, we have to determine the arbitrary
constants. The wavefunctions and their derivatives have to be smoothly joined at
points x = 0 and x = a by taking into account the normalization condition.

To consider the transparency of the barrier we have to analyze the relation be-
tween the particle moving toward the barrier in the region —oo < x < 0 and away
from the barrier in the region a < x < oo (terms proportional to A in (4.119)). The
ratio of these coefficients will determine the probability of transmission, T, of the
particle through the barrier, T = |A|?/|A1|?, where indices R and L indicate the
right and left side of the barrier, respectively. Assuming in addition that the barrier
is wide enough so thate ™ « 1, we get

16k2y2

N _eTe 4,122
EETaraE (4.122)

or using the energy,

_16E(% — )

T ~ V2 e 1% (4.123)
0
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Since this approximate expression is valid when e~2%% « 1, the wavefunction in-
side the barrier is mainly defined by the first term of (4.121), and the tunneling
probability is proportional to e 2%, Such an exponential dependence of the tunnel-
ing probability on the barrier penetration value y and the width a of the barrier is
the main factor determining the quantum character of the particle (see Figure 4.3).

4.6.4
Two-Level System

When considering atoms or molecules resonantly interacting with an electromag-
netic field, one can disregard all states for which the transition frequencies are
sufficiently different from the frequency of the light. One can often disregard all
states except the ground state and one excited state resonant with the exciting light.
Let us therefore consider a two-level system interacting with an external field. The
Hamiltonian of such a system is given by

H=Hy+ HY1), (4.124)

where Hj is the Hamiltonian of the two-level system and H(t) describes the ex-
ternal field. Since it is assumed to be time-dependent, we have to consider the
nonstationary Schrédinger equation.

Let us assume that the eigenstates corresponding to the two-level system (Hamil-
tonian Ho) have eigenvalues E? and EJ. We assume the external field is an oscillat-
ing field with frequency w, that is,

HY(t) = 2H' cos wt = HY (" 4+ e7") . (4.125)

Since the two-level system is characterized by two states, they evidently constitute
the complete set of functions. By denoting eigenfunction ¢, as corresponding to
eigenvalue EY and eigenfunction ¢, as corresponding to eigenvalue EY, we can
represent any wavefunction accordingly:

Y (t) = ci(t)gr + ca(t)ga - (4.126)

Substituting this wavefunction into the Schrédinger equation, (4.5), we get

ih% [c1(t)p1 + ca(t)pz] = H [cr(t)er + c2(t)e2] (4.127)

and now multiplying (4.127) either by ¢;* or by ¢ and integrating over all variables
of the system, we get

ad
ihgrer(t) = Elea(t) + Hiy(ea(t) + Hig(t)ea(t) (4.128)
and
ad
ihgreat) = Efca(t) + Ha(t)ealt) + Ha(er(r) (4.129)
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where H, (1) = (il H'(1)| j)-
In the absence of the external field, the solutions of (4.127) and (4.129) give

V(1) = a1 (0)e oy + ay(0)e %, (4.130)

where w; = E?/h and coefficients a;(0) allow one to satisfy the normalization
conditions. Evidently, all coefficients ¢ (t) should contain the phase factor e=1*J*
due to the first terms on the right-hand side of (4.127) and (4.129) even in the
presence of the external field. By inserting

cj(t) = aj(t)e st (4.131)

into (4.127) and (4.129), we get

. 3 _ 1 1 —iwyt

ih=—a1(t) = Hiy(t)ar(t) + Hiy(t)az(t)e (4.132)
and

. 3 _ 1 1 —iwiyt

iha(t) = Hyp(t)az(t) + Hy (t)a (t)e ) (4.133)

where w;; = w; — ;. By considering the resonance interaction with the exter-
nal field, we can assume that diagonal elements are absent, that is, H},(t) = 0.
Equations (4.132) and (4.133) then reduce to

a 1 1 —iw)1t

ﬁal(t) = EHlZ(t)e a;(t) (4.134)
and

a 1 1 —iw12t

3 2(t) = EHZl(t)e ai(t), (4.135)

and then substituting the time dependence of the field term defined by (4.125), we
get explicitly

Dty = Lmp, [etomomr o emitoton] gy (p) (4.136)
at ih

and
%az(t) = % Hy, [ei(”’+‘“21)t + e—“w—wﬂ)‘] a(t), (4.137)

where H); = (2|H!|1).
Let us assume now that w = 0, that is, the external field is constant. By differen-
tiating (4.135), with subsequent substitution of (4.134), we get
92 |H), |? 0

waz = —Taz + ia)HEGZ . (4138)
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Py(t)

0 o A 67
Ot

Figure 4.4 The time-dependent probability of a two-level system being found in an initially
unoccupied state.

Similarly, we can also derive a separate equation for a;.
The general solution of (4.138) is given by

ay(t) = (Ae'?t + Be 1) elvnt/2 (4.139)

where Q = 1/2,/w?, + 4|H;,|>/h%, and A and B are constants determined by the

initial conditions.
Let us assume that a,(0) = 1 and a,(0) = 0 at t = 0, that is, the system is in
state 1. Then we get

a __|H211| iwgt o:
2(t) = i—e sin Q¢ (4.140)
and

ai(t) = (cos Qt + i% sin Q t) eTiont/2 (4.141)

Now we can define the probability of finding the system in any of these two states.
Pi(t) = |ai(t)|? is the probability of finding the system in state 1, and P,(t) =
|ay(t)|? is the probability of finding the system in state 2. The latter is

_ 4| Hy, |?
B hzw%1 + 4| H211|2

1 |Hj, |?
0= oy +aal, (4143)

which is the so-called Rabi formula [11]. The time evolution of this probability is
shown in Figure 4.4. It is evident that P;(t) = 1 — P,(t). According to (4.142), the
system oscillates between the two states with frequency Q2 as long as the external
perturbation is acting.

In the case when the external field is oscillating in time according to (4.125) and
the oscillation frequency w is close to resonance with the transition frequency w;;
of the system, the two exponents in (4.136) and (4.137) are very different. Indeed,
eFil@tont is strongly oscillating with frequency close to 2w,; and eFi@—@2)t jg

Py(t) sin®(Q1) (4.142)

and
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very slowly oscillating. Considering the evolution on a timescale much longer than
1/2w31, we might disregard the highly oscillating terms in (4.136) and (4.137), and
thus we will come to the following approximation:

3al(t) = lHllze_i(‘”“_“’)taz(t), (4.144)
ot ih
iaz(t) = lelle—“wlz—wVal(t). (4.145)
ot i

Evidently, the solution of these equations is the same as the solution of (4.136)
and (4.137) given by (4.139) with substitution of w;; — w instead of w;; and 2 =

1/2 \/(a)21 — w)?2 + 4|H},|2/#2. In this case the Rabi formula is given by

4| Hy |? o1 | Hy |2
Py(t) = 21 sin? | =1/ (wy — w)? + 42—t
2() h2(wy — w)? + 4 HL|? 7| (@) h?
(4.146)
In the limiting case when o = w;;, we get
Hl
Py(t) = sin* =21t (4.147)

h
that is, the oscillations are determined by the strength of the external field.

4.6.5
Periodic Structures and the Kronig—Penney Model

In this subsection we consider yet another important model problem — the periodic
potential for a particle. Let us consider potential V(x) with periodicity ¢, so

V(x +¢) = V(x) . (4.148)

Since the wavefunction is defined up to a constant, the wavefunction of a particle
in this potential should satisfy the same demands of periodicity:

Y(x+c)=Cy(x), (4.149)
where

ICl=1. (4.150)
If we continue shifting the wavefunction, we should have

Y(x +ne) = C"y(x). (4.151)

To take into account an infinitely long periodic system, we assume the periodic
boundary condition at the length of N sites:

Y(x + Nc) =vy(x), (4.152)
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or
cN=1. (4.153)

This can be considered as the polynomial equation of Nth power, whose solution
is

C = exp(ikx), (4.154)
where
2
= 2 (4.155)
cN
is the lattice wavevectorand n = 0,..., N — 1.

As the zero coordinate for an infinite lattice is arbitrary, we can choose
P(x) = e uy(x), (4.156)

where uy(x) is the periodic function with period c. The final expression is known
as the Bloch theorem and u(x) is known as the Bloch wavefunction.

Let us consider the case where the potential V is defined as the infinite periodic
set of barriers as shown in Figure 4.5:

0, O<x<a,

V(x) = (4.157)

Vo, a<x<a-+b.

So the total length determining the periodicity is equal to a + b. This constitutes
the unit cell. For larger or smaller values of x coordinates, the cell is translated
horizontally by a distance a + b. The Schrédinger equation of the problem now
reads

hn? d?
(_E@ + V(x)) Y(x) = Ey(x) (4.158)
V(z)
L S DR I (I
-b 0 a a+b
pommm - - |

Figure 4.5 Potential surface of an infinite periodic system constituting the Kronig—Penney mod-
el. The unit cell is marked by a dashed line.
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or
d*y (x)
dx?

where we denoted 2m/A?E = W, and similarly 2m /A% V(x) = U(x). Inserting the
Bloch wavefunction, (4.156), into the wave equation, (4.159), we get

(W = Ux)y(x) =0, (4.159)

W (x) + 2ikw,(x) + (W — U(x) — k> up(x) = 0. (4.160)
We will look for its solution in the form of the wave
ug(x) = Aexp(iwx) (4.161)

in the region 0 < x < a, while for —b < x < 0 we will look for the solution in the
form

ug(x) = Bexp(ivx) . (4.162)

Here A and B are constants to be determined. Inserting these definitions in-
to (4.160), we get

w? 4+ 2wk — (W —k*) =0 (4.163)
and

v+ 2wk — (W —Uy—k*) =0. (4.164)
The solutions of (4.163) and (4.164) are

w=—-k+tvW (4.165)
and

v=—k+iJU— W . (4.166)

The value W is proportional to the energy of the particle, and it is considered to
lie in the interval 0 < W < U,. Thus, w is a real number, and v + k must be
imaginary. Keeping this in mind and taking a? = W and 8% = Uy — W (both a
and f are taken as positive numbers), we get

up(x) = ae ikreler 4 peikxeiax (4.167)
in the interval 0 < x < a, while for a < x < b, we get
ur(x) = cekxehx 4 geikre=hx (4.168)

Coefficients a, b, ¢, and d are to be determined from the boundary conditions
requiring that the function uy(x) and its first derivative are smooth at boundaries
x =0and x = a = x = —b. For them we get

a+b=c+4d, (4.169)
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a(a — k) — b(a + k) = c(—if — k) + d(if — k) , (4.170)
aei(a—k)a + be—i(a+k)a — ce(ik—ﬁ)b + de(1k+ﬁ)b , (4.171)
and
a(a _ k)ei(a—k)a _ b(O( + k)e—i(a+k)a

= ¢(—if — k)e® PP 4 d(ip — k)eltTA>

These four equations make up a homogeneous set of equations which give a non-
trivial solution when the determinant

1 1 1 1
k—a k+a k+if k—ip
elaa e—iaa eik(atb)—pb eik(a+b)+pb
(k—a)el*® (k + a)e™** (k4 ip)elkaTh=Fb (k _ip)eiklatb)+fb

(4.172)

is zero. This leads to

ﬁz_az

20

Equation (4.173) provides the possible values of energy W = a? determined by
the height of the barrier Uy, the lengths of the regions a and b, and the lattice
wavevector k. The parameter f = |/ Uy — a? is not independent. The solution can
only be obtained numerically.

We can, however, obtain a qualitative picture by considering the case when the
width of the barrier is small and the height is increasing. In this case we have
b — 0, cosh(bB) — 1, sinh(bB) — bfB, and B% > a?, while B2b = Upb is
constant. This gives

sin(aa) sinh(bf) + cos(aa) cosh(bf) = cos((a + b)k) .  (4.173)

Upba sin(aa)
S T aa + cos(aa) = cos(ak) . (4.174)

In Figure 4.6 we have plotted the left-hand side of (4.174), that is, function
msin(x)/x + cos(x), with x = aa, and with the choice Uyba = 2m. According
to (4.174) it should be equal to cos(y), with y = ak. The cos(y) function has values
between —1 and 1, and we have drawn this interval of values in Figure 4.6. This
allows us to obtain several shaded areas, where we can have solutions of

n% + cos(x) = cos(y) (4.175)

for a given y. The energies corresponding to these shaded areas represent bands of
allowed states. These are shown in Figure 4.7. There we show the dependence of
the particle energy x = a+/W on the momentum y = ak in the interval (-, 7).
As the cosine function is periodic, this is the smallest interval required to describe
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+ cos(x)

10

\
_
\

3 o o 1 2
Y

w4

Figure 4.7 Energy bands of the Kronig—Penney model (x? o E) as a function of momentum
y = ka.

the particle energies. It can thus be denoted as the unit cell in the momentum
space.

The solution obtained (the band structure) obviously depends on the barrier
height. As the height gets smaller, the bands start to overlap and all energy val-
ues become possible. At the other extreme, as the barrier becomes infinitely tall,
we can disregard cosines in (4.174) and then we have

sin(x)

~0. 4.176
- (+176)
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This is satisfied when x = sn, n = 1,2,..., and the energy becomes E o x? « n2.

This reminds us of the result for a particle in a box, which was described in the
previous section.

In the case of crystals, each site is occupied by an atom and can donate an elec-
tron. Therefore, many electrons fill the electronic bands. Metals are obtained when
one band is half filled by electrons. In this case electrons can easily change momen-
tum and respond to the applied electric field. In the case of semiconductors and
dielectrics, one band is completely filled (the valence band) and the higher-energy
band is empty (the conduction band). In this case the properties of the system are
determined by the electrons around the minimum of the conduction band and by
the holes around the maximum of the valence band. One of the main parameters
is the so-called effective mass of the electron or hole, which is defined by the cur-
vature of the band around the minimum or maximum of the band. It is defined
by analogy with the free electron, whose momentum is %k. For a free electron we
have

d? Efree h
= . 4.1
FTE— (4.177)
Similarly, the effective mass inside the crystal is given by
oy (PERNT
m* = h ( T ) . (4.178)

All properties of infinite periodic structures are characterized by a unit cell in
the real space. Equivalently, we can use the momentum representation, which is
essentially the spatial Fourier transform of the problem. In the momentum interval
from —m/a to 1/a, in every dimension the system is then fully characterized.

4.7
Perturbation Theory

In the previous examples we described exactly solvable models. However, real ap-
plications of quantum mechanics usually face the problem that the dynamic equa-
tions cannot be solved exactly. Often even numerical solutions are not feasible.
Even if a numerical solution is possible, approximative methods provide invalu-
able insight into the physics of the problem.

4.7.1
Time-Independent Perturbation Theory

Let us consider the situation when the Hamiltonian is represented by the sum of
two constituents: Hamiltonian H, characterizing an unperturbed part of the sys-
tem and a time-independent perturbation H'. Our aim is to generate the wave-
functions and energies of the perturbed system using the characteristics of the
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unperturbed system. The eigenvalues E O and eigenfunctions ¢, = |n) of the un-
perturbed system are defined as solutions of the following Schrodinger equation
and are assumed to be known:

Hogn = Ex gy - (4.179)

Let us assume further that H' = 1 W, where 1 is a small parameter. We will look
for the solution of the Schrédinger equation of the perturbed system,

(Ho+ AW)¥W = EW (4.180)
in the form
=Y a... (4.181)
n

By inserting (4.181) into the stationary Schrédinger equation, (4.7), we get
(E=FHo) Y anpn =AW Y angy . (4.182)
n n

Multiplying this by ¢ and subsequently integrating over the space of the variables
of Hamiltonian H,, we obtain the following equation:
Eay—Epan =2 Wnyany, (4.183)
where W,,, = (m| W |n).
Now let us consider a particular state I. The corresponding energy term E; and

the expansion coefficient a,, of the eigenfunction defined by (4.181) then also con-
tain correction terms of various orders:

E=E"+E) + 22E” + ... (4.184)
and
G = O + Aaly) + 2%al) + ... (4.185)

Inserting these expressions into (4.183) and collecting terms of the same power
of 4, we get the relationships

EY = wy (4.186)
and

EP + BV = 3 w0l (4.187)

in the case when m = I, also

( EO ESS’) A= w (4.188)
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and

Ml + (B - EY) ol = 3 Winpal! (4.189)
n

when m # [.
From these relationships we obtain the first-order corrections for the energy,

E=E"+1E" =E% +awy; =E” + vy, (4.190)

where V,,, = (m|H|n), and for the wavefunction,

v
_ (1) ml
]111 = @ + )Lal ()] + E m@m . (4191)

m7~l 1

Coefficient /'{agl) corresponding to the first-order correction can be determined
from the normalization conditions. Since eigenfunctions ¢; of the unperturbed

Hamiltonian are normalized, it follows that 1 + /1((1%1) + a%l)*) = 1, where we

% = 0, that

is, Re agl) = 0. Choosing an appropriate phase for the wavefunction, we can set
1)

disregarded terms proportional to A2. Thus, we must have a%l) + ag

ag = 0, and we obtain
le
Vi=pi+ ) —g —gn- (4.192)
ms£l El Em

Evidently, if the spectrum of the unperturbed Hamiltonian contains both dis-
crete and continuous parts, the additional term containing the integral over the
continuous spectrum should also be taken into account:

le Vvl
Yi=p + E —(pm—i-/—(p,,dv, (4.193)
0 _ 0 0 _ 0
wz B — Em E" —E,

where v enumerates the continuum part of the spectrum.
Similarly, the energy corrections in the second-order approach are given by

Wi, W,
B =3 _In Tl (4.194)

O _ 70
n#l El — En

and the desired energy up to the second order is therefore

Vin Vi
E;:El(o)+V”+Z—(O)” n(o).
wel B — En

(4.195)

Thus, it follows that the second-order correction to the ground-state energy is al-
ways negative since El(o) < EY for any n, when | = 0. In practice it is often
enough to take into account the first-order correction for the eigenfunctions and
the second-order corrections to the eigenenergies.
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Alternatively we can solve the problem in the original unperturbed basis set. Let
us now return to the full Hamiltonian, H = Hy + H'. The Schrodinger equation
for the system characterized by such a Hamiltonian can also be given in the basis
of the unperturbed Hamiltonian (see (4.179)):

> (Hun— Edpu)an =0, (4.196)

n

where H,,, = (m)| a |n). The matrix elements H,,, are equal to E,‘f’ + V., when
n = m, and V,,, when m # n. In order to obtain a nontrivial solution of (4.196),
the following requirement should be fulfilled:

det[Hpp — EOpn] =0 (4.197)

This provides the possibility to determine the eigenenergies of the system in the
representation of the unperturbed Hamiltonian. Equation (4.197) is called the secu-
lar equation, and can be used to consider degenerate as well as nondegenerate spec-
tra of the unperturbed Hamiltonian. In the latter case and for weak nondiagonal
terms, thatis, when | Hy,,, | < | E l(o)— E f,?) |, (4.197) can be simplified significantly. For
instance, by disregarding all nondiagonal terms, we obtain E = Hj; = El(o) + Vi,
that is, the result coincides with the result which follows from the first-order cor-
rections with respect to the perturbation. In order to obtain the second-order per-
turbation corrections, let us consider a particular state | = 1 defined according to
the unperturbed Hamiltonian. If we take into account only the nondiagonal terms,
which mix all other states with the chosen state I = 1, it follows from (4.197) that
the perturbed eigenvalue can be determined by the following transcendent relation:

E=H i | Hm* (4.198)
= i — - & - .
m=2 Hmm —E

This equation can be solved approximately. In the first-order approximation we get

0 - | Vi |
E=E"+Vii+ ). (4.199)

m=2 El(O) + Vi — (EIEIEL)) + me)

As an example let us consider the model containing two coupled energy states
characterized by ¢; and ¢, as the eigenfunctions of the unperturbed Hamiltonian
Hy. A secular equation, (4.197), then corresponds to the second-order determinant

‘Hll —-E Hi

=0, 4.200
Hy; Hy, — E‘ ( )

giving the solution

1
Eip = 5 |:(H11 + Hy) + \/(Hll — Hp)* + 4|H12|2} : (4.201)
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In the case when the perturbation conditions are satisfied, that is,

|Hy1 — Hp| > |Hyp

: (4.202)

the solution presented in (4.201) for state i = 1 coincides with the result which
follows from (4.199):

| Via|?
B o (20 + va)

Ey = E% 4+ vy + (4.203)

where H = Hj + V is chosen as the sum of the unperturbed Hamiltonian and the
perturbation, respectively. Similarly,

E = E" 4+ Vy + [Vor . (4.204)
E) + Vi — (El(o) + Vn)
In the opposite case, when
|Hi1 — Hy| < [Hiof , (4.205)
from (4.201) it follows that
Ep = M+ Ho _; Mz + |:|H12| + 7(1_[2';[112—1'22)2} (4.2006)

The dependences of the values of energies F; and E, on the difference of the
diagonal matrix elements Hy; — Hj; at some fixed value of Hj, are presented in
Figure 4.8. The dotted lines indicate the linear dependences of the Hy; and Hy,
values tracing the asymptotic values of energies E; and E,. It is worthwhile men-
tioning that the second-order corrections always contain the difference between the
energy positions corresponding to the Hy; and Hy; values.

Coefficients determining the strengths of perturbation can also be defined by
using (4.196), giving in this case

a1 Hyp

= — 4.20
a) E— H11 ( 7)

Hyp — Hao

Figure 4.8 Dependences of the values of energies E; and E; on the difference of the diagonal
matrix elements Hy, — Ho; at some fixed value of Hi,.
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This allows us to determine the ratio between coefficients. The normalization con-
dition is the additional requirement when determining both coefficients.

4.7.2
Time-Dependent Perturbation Theory

Let us now consider the system described by Hamiltonian Hy in the presence of
time-dependent perturbation H'(t). In this case the time-dependent Schrédinger
equation, (4.5), has to be solved. We use the interaction representation as described
earlier in this chapter.

We start with the time-dependent Schrédinger equation for the unperturbed
Hamiltonian:

L9 .
ih=u(t) = Hopu(t). (4.208)

The eigenfunctions are
gult) = e H B0, (4.209)

where E? are the eigenvalues of the unperturbed Hamiltonian. With use of the
expansion

()= calt)on, (4.210)
the time-dependent Schrédinger equation with the full Hamiltonian then reads

i3 calthon(t) = A Y cnlthontt), (@.211)
where

H(t) = Hy+ H'(t) . (4.212)

For coefficients ¢ slowly varying in time, we can use the following expansion:
en(t) = ) + ) + D) + ... (4.213)

We assume that at the initial time H'(0) = 0 (so that the system is unperturbed at
zero time) and consider the system starting with its initial state ¢;. In this case it
is evident that ¢, (0) = cﬁf)(O) = 0y, and cg)(O) = (0) = ... = 0. If we take into

into account these initial conditions, it follows from (4.211) that
2

]
ih o (c(jl)(t) +cPy + ) = Ek: Vi(®) ((m + ) + Py + ) ,

(4.214)
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where
Vir(t) = (O FH (1) k(2)) - (4.215)

In the first order of the expansion, it follows that

TG

and the solution is given by

(4.216)

t

M) = %/ Vi(t)dt . (4.217)
0

Subsequently, in the second order of the expansion we get

ac? (1)
i ({)t =Y Vi), (4.218)
k

and the solution is given by

1 2 t t
c(jz)(t) = (E) zk:/ ij(t’)dt’/ Vii(t)dt” . (4.219)
0

0

Coefficients corresponding to higher orders of the expansion can be defined in
a similar way. However, let us restrict ourselves to the first order of the expansion
and consider the quantity Wj;(t) = |c(j1)(t)|2. It determines the probability of the
quantum system emerging in state j after time ¢ when it was initially in state i.
In other words, W;;(t) corresponds to the probability of transition from state i to
state j after time ¢:

2
t
1
Wji(t) = ﬁ f Vji(t/)dt/ . (4220)
0
Let us now assume that perturbation H' remains constant during the time interval
from t = 0tot = t;. Then the time dependence of the matrix element defined

by (4.215) persists in the time dependence of the wavefunctions only in the time
interval defined by the action of the perturbation:

Vii(t) = eV, (4.221)
where wj; = (E;.)— E{)/h, and Vj, = (j1HYK), |j) = ¢j. In this case (4.220)
gives
|V|2 i1 2 |V|2 Sinz wjity
_ Jt iwiit _ J 2
Wji(h) = —5 /e sy = —3 7(ﬂ)2 (4.222)
0 2
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If the final state j belongs to the continuum of states, we have to consider the
probability of a transition to a particular energy interval E} <+ EY + d E{ containing
some number of states, which is usually defined as p(Ej.’)dEj.’, where p(Ej.’) is a
density of states. The total probability of a transition from the ith state is then
given by

Wi(h) = / Wji(t)p (Ej’) dE? . (4.223)

For long time t;, we can use the following approximate relationship

0_ 50
sin® Lj 2;‘)” E;) — E? 0 o
J i
(%)
since
1 . sin® at
- t]_l)ngo Py o(a). (4.225)

Taking into account approximate relation (4.224) and by integrating (4.223) over
the full energy spectrum of the final state (see Figure 4.9), we get

27
Wilth) = S~ Viil'p (Ej’) . (4.226)
The transition probability obtained is proportional to the time #; for which the

perturbation acts. Thus, we can define the transition probability per unit time as

Wi (t 27
w = tf ) 7|VEi|2p(E), (4.227)

where E indicates the energy region in resonance with E?. Returning to the transi-
tion between two states, we can also define formally the transition probability per
unit time as

Wji(tl)
2]

_ _2m oo 0 0
W = = v 6(Ej—Ei). (4.228)

The relation obtained is usually called the Fermi golden rule.

Figure 4.9 Level coupling scheme with the continuum spectrum characterized by the density of
states.
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4.8 Einstein Coefficients

In the case of a periodic perturbation, that is, when H(t) = Ve®i®! all deriva-
tions presented above can be easily generalized, giving
2n

w =TV (B0 — B0 F o) (4.229)

for two separate levels, and
2m )
w = —~[Vei|"p(E) (4.230)

in the case of transitions into the continuum states. Here E = E? F ho.

The above expressions determining the probability of transition per unit time
(transition rate) point to the notion of the lifetime of the initial state. The rela-
tionship between the lifetime, 7, and the transition probability per unit time w is
1/t = w.

For the description of the time-dependent perturbation, the interaction represen-
tation is used with advantage, because it allows us to consider higher-order terms
of the time-dependent perturbation conveniently.

This level of theory can be efficiently used for the description of the optical prop-
erties of a quantum systems. It is, however, more convenient to use the Liouville
space description as in Section 13.1.

4.8
Einstein Coefficients

Interaction of a quantum system with an external electromagnetic field can be con-
sidered a typical time-dependent perturbation. Indeed, the plane electromagnetic
field is usually described by

E=E&ycos(k-r—wt), (4.231)

where the polarization direction and amplitude of the wave are given by €, k is the
wave vector, and o is the frequency. Equation (4.231) represents a monochromatic
electromagnetic field. In the situation when the system is exposed to an incoherent
electromagnetic field, the latter is characterized by a continuous spectrum of fre-
quencies. The dominating characteristic of the field is then the density of states of
the electromagnetic field at the resonance frequency, and the transition rates can
be defined by using (4.230). For a dipole-allowed transition, the amplitude of the
interaction with the electromagnetic field is given by (— E), where j is the electric
dipole moment operator of the system (see Chapter 2). In the dipole (or the long-
wavelength) approximation (kr <« 1, which means that the wavelength is much
larger than the size of the system) the matrix element describing the transition be-
tween eigenstates j and i of the system induced by the electromagnetic field can

be defined as

Vii = —&u i cos (eo . ,u(}i) , (4.232)
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where u;; = |(j|u]i)| is the corresponding transition dipole moment amplitude,
and e’ and p; are corresponding unit vectors of the field and the dipole moment.
Using the Fermi golden rule (4.230), we find the rate of the transition from the
inital state i to the excited state f is

2m
Wi = 7|ﬂji|2|5o|zprad(hw) , (4.233)

where ppq(hiw) gives the density of states of the electromagnetic field at the reso-
nance frequency. By taking into account the definitions of the energy of the electro-
magnetic field given in Section 2.2, we can give the energy of the electromagnetic
field in volume V by Egaa = 2&0|E0|?V, and thus |&|* = Egea/(2¢0V). For an
isotropic sample, when all orientations of the transition dipole moment x ;; are
likely to be equal, the averaging over all orientations leads to

<cos2 (eo-,u(}i)> - % . (4.234)
Thus,
wri = Byip(hw), (4.235)
where p(hw) = Egedprd(hw)/V is the energy density of radiation states, and Bjo
is the Einstein coefficient of stimulated absorption (see [11] for more details):
2
By = |3ﬂe £h|2 )

(4.236)

where ¢ is the vacuum permittivity.

Similar calculations for the rate of the transition from an excited state f to the
ground state lead to the same result, that is, to proportionality to the intensity of ra-
diation. The Einstein coefficient of stimulated emission B; s equals the coefficient
of stimulated absorption, thatis, By; = B;.

Let us now consider the ensemble of the equivalent two-level system (e.g., atoms)
interacting with an electromagnetic field with frequency which is in resonance with
the i — f transition of each atom. The master equation for the occupation of states
(or probabilities) describing the radiative transitions between these two states can
then be written as described in Chapter 3. As the transition rates are known, we
can immediately write

dN f

dt
where N; and Ny denote the populations of the initial and excited states, respec-
tively, and A; s is the Einstein coefficient of spontaneous emission. The latter has
to be introduced to guarantee the Boltzmann relationship between the equilibrium
populations. Indeed, in the case of thermal equilibrium between the system and
the radiation, all transitions should be compensated, that is,

= NiBgip(hw) — NyBisp(hw) — NyAif, (4.237)

NiByip(hw) = N¢Bisp(hw) + NfAiy . (4.238)
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4.9 Second Quantization

Since both transition rates are equal, that is, wy; = w;r and Byip(hw) =
Bifp(hw), it follows that the population rates should be equal in the stationary
conditions if the spontaneous emission is not taken into account (when assuming
Air = 0). However, that is in conflict with the Boltzmann distribution of the
populations given by

Ni _ =)

N , ie, Bpip(hw)= Birp(hw), (4.239)

which should be reached in stationary conditions. To avoid this conflict, Einstein
proposed the spontaneous emission term. If the Boltzmann ratio for the popula-
tions, (4.239), is taken into account, it follows that

A
(Ef—E)/(ksT) _ B/

plhw) = (4.240)

Bfie

where ho = Ef — E}.
In thermal equilibrium, the density of states of the thermal electromagnetic field
is given by the Planck distribution [11]:

hw3/c?

’O(hw) = eho/(kgT) _ 1~

(4.241)
where w = 2mv. Comparison of the last two expressions confirms that B = By;
and the Einstein coefficient of spontaneous emission is

?|usil”

Air= .
i 3eohmed

(4.242)

It is noteworthy that the spontaneous emission coefficient increases as w? and

thus it is potentially of great importance at very high frequencies. The spontaneous
emission process can be viewed as the outcome of the interaction of an excited
state with zero-point fluctuations of the electromagnetic field as described in Sec-
tion 14.7.

4.9
Second Quantization

The description of quantum systems as discussed above constitutes the so-called
first quantization. In the first quantization we described the system by operators
corresponding to the physical observable quantities. In this section we briefly re-
view different types of operations over the system states.

Let us once again consider the harmonic oscillator problem as described in Sec-
tion 4.6.1. We found that the operator § — d/d& acting on a wavefunction ¢, (&)
with energy ¢, creates a new wavefunction ¢,,41(§) with energy ¢, + 1. Similarly,
the operator & + d/d& creates a new wavefunction ¢,—;(&) with energy ¢, — 1.
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4 Quantum Mechanics

The operator & — d/d& is thus the energy-raising operator, and (§ + d/d&) is the
energy-lowering operator.

With proper normalization we define the energy-raising and energy-lowering op-
erators as

al = L (g - i) (4.243)

V2 dé

and

@_L(§+i) (4.244)

V2 & /- '

The following rules of action on the wavefunctions then apply:

aT0n(E) = Vn + 19 41(8) (4.245)
and

agn(§) = Vng,—1(§) . (4.246)

Let us now switch to a bra-ket notation. Let states |n) and |n + 1) have energies
€, and €, + 1, respectively. We can introduce the notion of an energy “quantum,”
a particle, and associate it with the state of the oscillator. We denote state |n) as
the state with n quanta. The energy of this state of n quanta is ¢, = n + 1/2. The
zero-quantum state is to be taken as the ground state of the oscillator. The energy
of the zero-quantum state, also known as the vacuum state, is gy = 1/2.

In this language the operators a4 and @ become the operators which manipulate
the number of quanta. They are now defined in the space of these quantum num-
Dber states, and they represent the creation or annihilation of the energy quanta. In
bra-ket notation, (4.245) and (4.246) become

aln) = V/nln—1) (4.247)
and
afin) = Vn+1n+1). (4.248)

We also properly get that a|0) = 0, so the vacuum state is the state with the lowest
possible energy.
Let us now check the action of a'a:

ataln) = atnln—1) = n|n) . (4.249)

We find that the operator i = a7d has |n) as its eigenstate, with the eigenvalue
corresponding to the number of energy quanta represented by state |n). It therefore
corresponds to a particle or quantum number operator.

The creation and annihilation operators satisfy the following commutational re-
lation:

[G,67]=1. (4.250)
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4.9 Second Quantization

All operators needed for the description of the harmonic operators can be expressed
in terms of the creation and annihilation operators. Their commutation relations
allow us to represent and evaluate conveniently all observable properties of this
quantum system. For instance, the Hamiltonian of the harmonic oscillator, (4.90),
in terms of the creation and annihilation operators reads

A ara 1

H=ho (a' G+ E) . (4.251)

It is worthwhile mentioning that the excitations of the harmonic oscillator satisfy

Bose—Einstein statistics. This will be described thoroughly in Chapter 7. Later we
assign this property to all particles with even spin (whole number); such particles
are called bosons. Fermions, another type of quantum particle, have fractional spin,
and we can also define creation and annihilation operators for them, only with a
different commutation relation.

4.9.1
Bosons and Fermions

The creation and annihilation operators introduced in the previous section are con-
venient to describe systems containing many particles of the same origin. Due to
the uncertainty principle, quantum particles are indistinguishable, and the wave-
function of the system has to be either symmetric or antisymmetric with respect to
permutation of indistinguishable particles. The system containing many particles
should follow statistical rules [15, 17]. The photons, which characterize the electro-
magnetic field, as well as the vibrational quanta introduced in Section 4.9, satisfy
the so-called Bose—Einstein statistics. From the point of view of permutation, the
wavefunction of the system containing many bosons is symmetric.

Fermions are another type of particle, and are characterized by an antisymmet-
ric wavefunction with respect to particle permutation. They satisfy the so-called
Fermi-Dirac statistics. Due to this permutation requirement, the wavefunction of
a many-fermion system cannot contain two particles in the same quantum state.
The particles of this type satisfy the so-called Pauli exclusion principle, which
leads to Fermi-Dirac statistics. It is noteworthy that the type of statistics the parti-
cles satisfy correlates with their spins. The particles characterized by half-integer
spins (1/2,3/2,...) are fermions, while the particles with whole-number spins are
bosons. These properties are described in more detail in Section 7.3.3.

In the system containing many particles, the quantum states can be defined in
the space of so-called “occupation numbers” of particular states. As demonstrated
for bosons in the previous sections, these states are directly defined by the creation
operators; see (4.278). The bosonic character of a particle is determined by the
commutation rules

[G,67T]=1 (4.252)
and

[G,8]=[aT,aT]=0, (4.253)
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which are satisfied by the creation and annihilation operators. In the case of
fermions, the commutation (anticommutation) rules are as follows:

aa +ata={aa’} =1 (4.254)
and
Ga=atat=o0. (4.255)

In the case of a many-particle system containing different types of particles, the
commutation rules have to be formulated for all of them. In the case of bosons, the
creation/annihilation operators for different particles commute, and for fermions
they satisfy the anticommutation rules.

49.2
Photons

In this subsection we consider the quantization of the electromagnetic field. In
Section 2.3.2, we showed that the electromagnetic field can be represented by an
ensemble of (infinitely many) harmonic oscillators, so-called field modes. Here we
will denote the quanta of these modes as photons.

Equations (2.76) and (2.77) link the Fourier coefficients A ;; of vector potential
A with momenta p; and coordinates g, of the mode oscillators. The modes are
considered independent so that each of them can be treated and quantized as an
isolated system. Quantization itself is performed simply by promoting the momen-
ta and coordinates to operators p;, and g,, and postulating commutation relations
according to (4.4), that is,

[Pk Q] = —1h0,2 04 - (4.256)

As we have already demonstrated, it is very useful to express all quantities in
terms of creation and annihilation operators introduced for the harmonic oscillator
by (4.243) and (4.244). Let us introduce operators

N

G = adur + Ppar (4.257)

and

al, = a*Gu+ B pu, (4.258)

for each mode characterized by A and k. We require that the commutation rela-
tion, (4.252), holds, and the Hamiltonian of a single mode has the form of (4.251).
The latter requirement gives the following relations for coefficients:

) 1 i
R *a]l =0, 2=_y 2:—y o = —— . 4.259
=0, laP= 2 |pP= o, fra=-a. (4259

These are consistent with the commutation relation for a particular mode:

[af,a] = 2hIm[B*a] = —1. (4.260)
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Conditions (4.259) are satisfied if o = /@/(2h) and B = i(1/+/2Aw), and the
creation and annihilation operators of the field are then

g = | = +— i 4.261
Qi = — .
ik > Gk P/lk ( )
N L) i
Mk =\ 75 Gk — —Puc . (4.262)

The inverse relations

and

. . hor. A
Pk = —10g m (cuk - alk) (4.263)

ik = | 3o (4 + 8) (4264

can be used to express the Fourier components A, (now promoted to operators
A ,%) of the vector potential A 2k in terms of the creation and annihilation operators.
Comparing (2.76) and (2.77) with (4.263) and (4.264), we get

" h
A Ajpg = | —a 4.265
= Ajk =4 T0econ Gk ( )
A s Al = [ (4.266)
ik ik 20 comy k- :

Now we will express the operator of the vector potential in terms of & and a¥. We
obtain [7]

Any =32 (faumase + frnal,) - (+267)

kA

and

and

Here we introduced a spatial vector function

h ik-r
fik(r) = €Lk me (4268)

containing the polarization of the mode. The electric field vector is related to the
vector potential by a time derivative (see Section 2.2). In the Heisenberg represen-
tation, the time derivative corresponds to the commutator with the Hamiltonian
(see (4.48)). The operator E (r) thus reads

E(r) = —% [I:IT,A(r)] = Z (m)kf“ Pk —iwk f,_ (7 aik) , (4.269)

kA
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where

. ¢ 1
Hr=) ho, (a;kaﬂk + 5) (4.270)
Ak

is the Hamiltonian operator of radiation in the empty space. In a similar way one
can obtain operators for all relevant electrodynamic quantities. The states of light
can be constructed from the eigenstates of the Hamiltonian. In each mode these
eigenstates follow (4.247) and (4.248). It is worthwhile mentioning that the quanta
of the electromagnetic field — photons — behave according to Bose—Einstein statis-
tics, that is, they are bosons.

4.9.3
Coherent States

Any state of the electromagnetic field can be described in terms of the eigenstates
of the field Hamiltonian. However, if we interpret states of the electromagnetic
field in the same way as we understand the states of matter, we may get confusing
results.

Let us consider, for example, a state with n photons at some specific mode:

1
|¢)=|”)Eﬁ

According to (2.70) and promoting the field amplitudes to the operators along
(4.265) and (4.266), we can obtain the time domain vector potential as

atmoy . (4.271)

A h ~ —iw ik-r AT _iwpt—ik-r
Arn=>" Toeon (aspeiontibr 4 g elont=ikr) | (4.272)
k

while according to (2.60) the electric field reads

Ery=i) 2;)”6"0 (a4 G elonmr) (4.273)
k

Let us consider the expectation value of the electric field in the state |y) = |n). For
that we need to calculate expectation values

(wlaly) (4.274)
and
(wla'|y) . (4.275)

However, both of these quantities are zero, and the expectation value of the field is
therefore

E(r,t) = (p|E(r,t)|y) =0. (4.276)
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This is a surprising result since the number-state of the field does not display an
electric (or magnetic) field. The field state when the observable electric field is “on”
is therefore not the number-state. We thus next consider different types of states of
the field.

A different type of state enables us to describe states which exhibit electric fields
more similar to those known from classical intuition. Let us consider the bosonic
annihilation operator of the harmonic oscillator a. The annihilation operator to-
gether with the creation operator &' forms the number operator # = 474, whose
eigenstates are the same as those of the Hamiltonian, but the eigenvalues are the
number of excitations:

nln) = nln) . (4.277)
Here
atr
In) = Ve 0) (4.278)

are the number states generated from the vacuum.
Equivalently to the stationary Schrodinger equation, we can write the eigenequa-
tion for the annihilation operator [18, 19]:

ala) = ala) . (4.279)
To find the expression for |a), we expand it in the number states:

la) = caln). (4.280)

n

Inserting this expansion into (4.279), we find

Atn Atn
chajﬁm) —a) cn%m) : (4.281)

Now on the left-hand side we use the commutation relation (4.260), that is, aa’ =
1+ a4, to change

aa™=(1+a

=o'V paTa+ata)a™ 2 = =na"V4ama (4282
and we get an iterative expression:
ac, = vn+1c,4q (4.283)
or

(4.284)
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This allow us to get the solution for the coefficients in terms of ¢:

a a? a’

Cp = —F=Cp—1 = —F7————=0Cn—1

NG n(n—1) ~ Ul

Co .
And we get
aﬂ
@) =co Y —|n)
— /nl
The normalization requirement
la
(ala) = Z—'—Coexp(|a| )=1
m

allows us to determine the last unknown parameter:

(%)
Co = €xp —T .

Thus, the eigenstate |a) is given by the expansion in the number-states as

_ |O(|2 a®
la) = exp (—T)Xn: m|n) .

(4.285)

(4.286)

(4.287)

(4.288)

(4.289)

The state |a) can be considered as a new type of state described by the “quantum

number” a. The |a) states obtained are not orthogonal since

2 2
talf) =exp (g - 15 - L1

and also

[{alB)I* = exp(~|a — BP) .

(4.290)

(4.291)

The states |a) are called coherent states. Additional properties of coherent states are

that the expectation value for the coordinate operator g is
(a|gla) = Re(a),
while that of the momentum operator p is

(a|pla) = Im(a).

(4.292)

(4.293)

Now suppose that the state of the field |y) is a coherent state |a). This coherent

state will now generate the electric field since

(aldla) = a

(4.294)
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4.9 Second Quantization
and
(alaf|a) = a* . (4.295)

Thus, the value of the electric field becomes completely defined. The correct state
of the “emitting” field is the coherent state.

Let us now express the coherent state in terms of the field ground state (the
vacuum). From the definition of the number-state we have |n) = (n!)~1/247*|0).
Equation (4.286) can be rewritten in terms of an exponential operator as

lal> o
|a) = exp (—T + aa‘) |0) . (4.296)

From the operator identity a|0) = 0 it follows that
exp(ad’)|0) = exp(aa')exp(xa)|0) (4.297)

for an arbitrary number x. Applying the Weyl identity (see Appendix A.3), we obtain

exp(ad’)exp(xd) = exp(ad’ + xa)exp (—?) . (4.298)
Thus, taking x = —a™, we obtain

la) = exp(ad’ — a*a)|0) . (4.299)
The operator

D(a) = exp(ad’ — a*a) (4.300)

is known as the displacement operator. It can easily be checked that D(0) = I. The
commutator of an operator S(a) = adl — a*a,

[S(a), S(B)] = ap* — pa* = 2is, (4.301)

where s = Im a 8%, leads us to an important property of the displacement operator,
namely,

D(a)D(B) = exp(is)D(a + f) . (4.302)

It follows now that D"(a) = D(na) and D(—a) = DT(a). Thus, the operator D
indeed performs a displacement of the coherent state.

It can be shown that the coordinate and momentum variances in an arbitrary
coherent state are the same as those of the ground state of the harmonic oscillator.
Thus, the coherent state is equivalent to the ground state of the harmonic oscillator,
which is a Gaussian wavepacket shifted by o in the phase space of the oscillator.
The coherent state is the state with the closest relationship to classical physics [19].
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One more relation is important for coherent states. Consider the outer product
of the coherent states |a)(a|. Using the expansion in the number-states, (4.278),
we have

a*m

la)(al :exp(—|a|2)zz%ﬁ|n)(m|. (4.303)

We now take a = rexp(ip). By integrating the outer product in the full complex
plane (we denote d?a = da’da”, where @ = o’ + ia”’) and changing the integra-
tion to polar coordinates, we have

[es} 2n
[n)(m| .
d?ala)(a| = E r"tmtlexp(—r?)dr | dgexp(ip(n — m)) .
/ ' nlm! 0/ 0/

(4.304)
The integration over angles is
27
/d(p exp(ip(n — m)) = 20y , (4.305)
0
and the integration over the radius is
o0 oo
2n41,—r? 1 na—x 1
r e "dr = 7 | x'e dx = En!. (4.3006)
0 0
We thus find that
/d2a|a)(a|=n2|n)(n| =nl. (4.307)

We can see that the coherent states form a complete (overcomplete) set of states
and they resolve unity up to a constant. These states can therefore be used for
a complete expansion of arbitrary quantum states in an arbitrary quantum prob-
lem. We use the coherent states to describe relaxation phenomena for an arbitrary
second-quantized Hamiltonian in Section 10.5.
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5
Quantum States of Molecules and Aggregates

As described in Section 4.7, pure transitions between quantum states should corre-
spond to infinitely sharp lines (stick spectra) reflecting their transition frequencies
according to (4.228). In reality, electronic molecular transitions are not infinite-
ly sharp. Vibrational degrees of freedom of molecules and/or the molecular sur-
roundings are coupled to the electronic excitations, thereby leading to significant
broadening of the transition bands in the spectra. Different broadening mecha-
nisms will be introduced later and some consequences for spectroscopy will be
discussed in Part Two. Here the molecular exciton approach, which describes the
coherent superposition of the excited states of molecules in molecular aggregates,
will be considered. A coherent relationship of this type between excitations of the
molecules should evidently manifest itself in the stationary and time-resolved ab-
sorption and fluorescence spectra. Exciton models corresponding to the so-called
Frenkel, Wannier—Mott, and charge-transfer (CT) excitons will be described. The
concept of exciton self-trapping will also be introduced.

5.1
Potential Energy Surfaces, Adiabatic Approximation

A molecule is essentially a collection of positively charged nuclei and negative elec-
trons, which all interact through electrostatic interactions. Their states and dynam-
ics are usually described using quantum mechanics. We denote coordinates of the
nuclei by R and coordinates of the electrons by r. The starting point of the system’s
theoretical description is its Hamiltonian. It consists of the kinetic and potential
energy of all particles:

P2 p?
H:§ i i
0 : 2M,+EJ:ZMJ
Tk min—qmq” +ki§>j—62 kY I s
R, — R R R -ty
ij mj

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2013 by WILEY-VCH Verlag GmbH & Co. KGaA.
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5 Quantum States of Molecules and Aggregates

where k. = (4meeg) ™}, P; and P are the operators of the momenta of nuclei and
electrons, respectively, g, is the charge of the nth nucleus, and e is the charge of
an electron (the elementary charge).

The notion of electronic transitions of a molecule implies a major simplifica-
tion for the molecular description. This is justified because of the difference in
the mass of an electron (m.) and the mass of a nucleus (M;). Since the mass of a
nucleus is much larger than that of an electron, the motion of nuclei is much slow-
er than that of electrons, and therefore it can be assumed in the first approxima-
tion that the nuclei are fixed at their equilibrium positions denoting the structure
or configuration of the molecule. The so-called adiabatic approximation (or Born—
Oppenheimer approximation) is then used to describe the quantum properties of
molecules. The basic parameter is then the ratio m./M;, which is the small param-
eter of the approximation [11, 20]. In the adiabatic approximation, the Hamiltonian
of any molecule or of a molecular system can be formally given as

H=H,(r)+ V(r,R), (5.2)

where r and R are the coordinates of electrons and nuclei of the system, respec-
tively. R is taken as a number (nonoperator). H,(r) is the electronic Hamiltonian
including the kinetic energy of electrons, and the electron—electron interaction en-
ergy, V(r, R), is the electron—nuclear interaction energy taken at fixed positions of
the nuclei. The kinetic energy of nuclei is disregarded. Since the nuclei are at fixed
positions, their Coulombic interactions only add an offset to the potential energy.
By diagonalizing this Hamiltonian, we obtain the eigenvalues €°(R) and eigenfunc-
tions ¢¢(r, R) for the electronic subsystem from the following Schrodinger equa-
tion:

Ho(r, R) = €°(R)¢(r, R) . (5.3)

Note that this eigenvalue equation is only for electronic degrees of freedom, and
all values are parametrically dependent on R, that is, the equation is solved for a
fixed configuration of nuclei represented by fixed R values. This is essentially a
variational problem as well, since the nuclear coordinates should be varied to min-
imize the electronic energy. This optimization guarantees the proper equilibrium
configuration of the molecule.

In the next step the nuclear kinetic energy T(R) may be included to describe
vibrational degrees of freedom of the nuclei. In the adiabatic approach, the nuclear
kinetic energy is treated as a perturbation.” The electronic wavefunction ¢(r, R)
obtained from (5.3) can be used as a basis set, that is, we will use the following
expansion for the total function to account for the nuclear motion:

W(r,R) =) ®(R)p(r,R). (5.4)

1) Itis worthwhile mentioning that there is a different approach called the diabatic (or nonadiabatic)
approach, which considers V(r, R) as a perturbation. Both approaches lead to similar conclusions.

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c05 — 2013/6/3 — page 103 — le-tex

5.1 Potential Energy Surfaces, Adiabatic Approximation

The Schrédinger equation, which has to be solved to obtain the whole (including
nuclear motion) spectrum, is as follows:

(T(R)+ H)¥W(r,R) = E¥(r,R). (5.5)

By inserting (5.4) into (5.2), we obtain the following equation for the expansion
coefficients @,(R):

(T(R) + U(R) — E)®,(R) + ZA“/(R)@E/(R) =0, (5.6)

where
U®(R) = €°(R) + A.(R) . (5.7)

€°(R) is the so-called adiabatic potential energy in the eth electronic state, and

h? a
Aee/(R) = _Z ﬁ/ |:§08*(r, R)ﬁ@g (Y, R)
32

+1 e* R e
20 (r, R)——
7% ( )8Ri2¢

(r, R)i| dr (5.8)
defines the so-called nonadiabaticity operator. This operator appears because the
nuclear kinetic energy operator acts on the electronic wavefunctions, which para-
metrically depend on the nuclear coordinates.

By disregarding off-diagonal terms in (5.6) (e # ¢’), we arrive at the “real” adia-
batic results, where the electronic quantum number e determines the energy levels
of the molecule characterized by the eigenfunctions

W, (r, R) = ®,(R)¢p"(r, R) (5.9)

for the following diagonal Hamiltonian:

H, = T(R) + U*(R) . (5.10)

The electronic energies U°(R) have become well-defined potential energies and de-
termine the spectrum of the molecule. Figure 5.1 shows a projection of the ground-
state and excited-state potential energy surface on a particular nuclear coordinate,
demonstrating the change of the nuclear equilibrium position between two states.
We will be mainly interested in the behavior of the system close to the minima of
the corresponding potential energy surfaces. In that case the harmonic approxima-
tion can be used to define the potential energy surfaces, which yields

U*(R) = U*(Ro) + %Z

L

TR U R)(R — Ra)(R; = Rpo) . (5:11)
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UN(R)

S
S
=

R— Rmin

|
|
|
T
0 d
Figure 5.1 Projections of the potential energy surfaces of the ground state and the first excit-

ed state on a particular nuclear coordinate, where d is the relative shift of the minima of both
curves.

The potential energy can be written in terms of noninteracting degrees of free-
dom, so-called normal modes. In the normal coordinate representation, we ar-
rive at some new nuclear coordinates Q, and the oscillator potential is obtained
in quadratic form [21], that is,

hoi

U°(Q) = U*(0) + Z — (5.12)

where ¢ is the vibration frequency of the ith mode in the eth electronic state.
Then (5.10) for the Hamiltonian H, can be rewritten as

) hot 92
H, = U“(0) + Z ;’ (Q% - a_QZ) (5.13)

and the corresponding Schrédinger equation for the harmonic oscillator,

(H, — E)®.(Q) =0, (5.14)

can be easily solved as shown in Section 4.6.1 [11, 20]. It is noteworthy that
the Hamiltonian of the harmonic oscillator can be represented in the second-
quantization representation by means of creation and annihilation operators (see
Section 4.9). The solution of (5.5) gives quantum energy levels of the harmonic
oscillator with internal vibrational quantum numbers v;. The total energy of the
system has eigenvalues

E., = U°(0) + Z (vi + %) hot (5.15)

with corresponding eigenfunctions

oo ()

D,y =
@ NZAINED

H,(Q), (5.16)
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5.1 Potential Energy Surfaces, Adiabatic Approximation

where

doQv

is the vth-order Hermitian polynomial.

Considering optical energy gaps, the lowest-energy state is the state in which
the molecule is usually observed under room temperature conditions. When the
molecule is electronically excited into an excited state e, the Hamiltonian corre-
sponding to the nuclear degrees of freedom can be written as

H,(Q) = (-1)" exp(Q’) 1, exp(— Q) (5:17)

F,(Q) = Hy(Q) + AHL(Q), (5.18)

where I—AIg(Q)A is the Hamiltonian describing the system in the electronic ground
state, and A H,(Q) is the change of the system energy due to electronic excitation.
Such a representation allows us to define terms responsible for the interaction
of the molecular excitation with molecular vibrations. The difference term corre-
sponds to the difference between the ground-state and the excited-state nuclear
potential. This can be verified by making the decomposition

H.(Q) = T(Q) + U%(Q) + (U°(Q) — U%(Q) , (5.19)

and comparing it with (5.18).

Let us now consider the case of a single vibrational mode, since the general-
ization to the case of many vibrational modes is straightforward. For convenience
in this case we will skip the mode numbering index i and will use the following
definition: w{ = w,. So the potential energy surfaces of the excited and ground
electronic states are

U®(Q) = U°(0) + T(Q— d)? (5.20)
and
U%(Q) = U#(0) %QZ, (5.21)

respectively. Here d is the displacement of the minimum of the excited-state poten-
tial from the minimum of the ground-state potential; see (5.12). Thus, the energy
difference between both potentials is given by

U%(Q) — U8(Q) = Ee + 1 — dhw,Q + 6 Q% (5.22)
where

E. = U*(0) — U2(0) (5.23)
is the electronic excitation energy,

dZ
A= hwe— (5.24)
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5 Quantum States of Molecules and Aggregates

is the so-called Franck—Condon energy [20, 22], which is analogous to the reorgani-
zation energy defined in the theory of CT in polar solvents, and
hw, —hog

2
is the change of the vibrational energy in the excited electronic state in compari-
son with the vibrational energy in the ground state. The last two terms in (5.22)
determine the vibronic interaction (or the electron-phonon interaction).

o= (5.25)

5.2
Interaction between Molecules

Intermolecular interactions may significantly change the electronic excitation spec-
trum of molecular aggregates with respect to the spectrum of an isolated molecule.
When intermolecular interactions are strong, this may result in exciton forma-
tion [22-24]. They also determine van der Waals forces (or so-called dispersion
forces), describing the repulsion of molecules at the closest distances and their
attraction at larger distances as shown schematically in Figure 5.1. The intermolec-
ular interaction can also be presented as a sum of terms inversely proportional to
growing powers of the intermolecular distance using the multipole expansion for-
mula. Indeed, when the charge distribution of two molecules is p; (r) and p;(r), the
Coulomb interaction between them

VCoulomb k // p1|ir_p2(r d d / (526)

may be expressed in terms of the multiple moments of the respective charge distri-
butions. Taking the center R; of the ith molecule as a reference point, for instance,
its center of mass, one defines the total charge

g = [ pitnar, (527)
the dipole moment

D= [ putr)r - Ridr (5.28)
the quadrupole tensor

Qua = [ AN [ = Ri)alr = Ry = duplr = R, (5.29)

and higher multiple moments of its charge distribution p;(r) relative to this center.
The energy of the interaction between two molecules with the relative position
vector R = R; — R; and the corresponding unit vector R is then expressed as

iqj i(D:Ry)—q:(D;R
V(R):ke[q}gur‘ﬂ j O)quj( 0)
D;D;j —3(D;Ro)(D;Ry)
+ J e RS0 +j| . (5.30)
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5.3 Excitonically Coupled Dimer

For such an expansion to be valid and meaningful it is essential that the distance R
between the molecules is considerably larger than the size of the charge distribu-
tion in individual molecules to guarantee a proper convergence of the series. The
first two terms are important for charged molecules and in the case of coupling
between CT states. However, in many situations molecules can be considered un-
charged, and the third term of the expansion is dominant. It reflects the dipole—
dipole interaction between two molecules.

It is noteworthy that the dipole—dipole approximation is reasonable not only if the
intermolecular distance R is larger than the size of the molecule but also when R
is larger than the dipole radius a, where a = u/e (u is the transition dipole mo-
ment). Since the transition dipole moment is at most on the order of a few debyes
(1D = 3.336 x 10*® Cm; e.g., an electron separated from a hole by 1 A corresponds
to 4.8 D), the dipole radius is on the order of a few angstroms. As a consequence,
in many cases the dipole-dipole coupling term to a large extent determines the
observable spectroscopic properties of the interacting molecules as well as the ex-
citation energy transfer properties. Higher-order terms fall off more rapidly with
distance, and their importance is limited.

For the case when the intermolecular distances become comparable to the
molecular characteristic dimensions, the multipole series expansion loses mean-
ing and one must resort to the full expression for the Coulomb energy, (5.26).
The molecules are then no longer strictly distinct entities. However, even then one
invokes the dipole—dipole approximation as an effective model that may give at
least a qualitative description.

Molecular aggregation leads to substantial changes in observed energy spectra
due to the emergence of nonvanishing intermolecular interactions. These spectral
changes are usually related to exciton formation [6, 24, 25]. The excitons are also
widely used to explain energy transfer through the molecular system.

5.3
Excitonically Coupled Dimer

The simplest system for which exciton effects can be demonstrated is a pair of
interacting molecules. We call such a pair an excitonically coupled dimer, where
it should be noted that the word “dimer” does not imply that the molecules are
in van der Waals contact; in fact they can be spatially separated. We speak of a
physical dimer to distinguish it from a chemical dimer, where chemical bonds are
present between the two monomers. In a physical dimer only electrostatic inter-
molecular interactions through space are relevant and exchange of electrons be-
tween molecules is negligible.

First we consider two similar molecules in a vacuum at a fixed distance R;, hav-
ing a fixed orientation and each having only two energy levels. For a given Hamil-
tonian H the isolated molecules have their two eigenstates ¢’ determined by

Al = ol (5.31)

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

107

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

108

Chap. c05 — 2013/6/3 — page 108 — le-tex

5 Quantum States of Molecules and Aggregates

where the subscript n identifies the pigment (either pigment 1 or pigment 2) and
the superscript i refers to the ground state (g) and the excited state (g). We will
describe different and identical eigenenergies of both molecules. Later we take the
ground-state energy to be zero, that is, s(lg) = s(zg) =0.

When the molecules interact, the total Hamiltonian besides H; and H, also in-
cludes interaction V between them. In that case ¢; and ¢, are no longer the correct
eigenstates of the dimer and the eigenenergies will also be different. Thus, inter-
molecular interaction gives rise to perturbation of the energy spectrum. Due to
the weak intermolecular interactions, the perturbation theory for degenerate states
can be used with the Heitler—London approximation, which means that the eigen-
functions of the dimer are equal to superpositions of the product of the molecular
eigenfunctions.

We describe the electronic ground state as ¥, = <p{g)(p£g), which corresponds to
the condition of noninteracting molecules, and the corresponding Hilbert space
of the dimer is determined as the product of the Hilbert spaces corresponding to
monomers. Note that we do not properly antisymmetrize ¥, thereby implicitly
assuming that exchange of electrons between participating molecules 1 and 2 does
not occur. The corresponding ground-state energy of the dimer is now expressed
by

By = (o6l i+ 1 + ¥ [oP0l?)

v

8({;) + S(zg) 4 <(p{g)(pég)

(Pig)‘Pég)) = e + e + Vg (>-32)

This indicates that coupling between molecules leads to a displacement of the
ground-state energy by V,,. The excited states can be formally written as

¥, = capl9¥® + cpPl . (5.33)

The excited states are normalized and orthogonal, and the coefficients c,; and c,;
thus fulfill the following equation:

leal’ +lcal> =1. (5:34)

Consequently, the excited state e of the coupled system is a linear combination of
two terms in which one or the other molecule is excited. The relative contributions
of these two terms are determined by coefficients ¢, ,. The new eigenstates are
required to be stationary solutions of the Schrédinger equation of the dimer; thus,

(B, + H, + V)¥, = E.W, . (5.35)

Multiplying both sides from the left with either (p{g)gpgg) or gpig)wf) and integrating
over the entire space gives the two equations

ca (e + (o0 | ¥ |ol%0) + ca (o6| V]olP0l?) = cabe (536)

and

ol (wig)(pée)’ % ‘@id(pég)) + ¢, (8(28) + <(p{g)¢56) \% ’(p{g)wée)» =cnE., (5.37)
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5.3 Excitonically Coupled Dimer
which can be written in shorthand notation as
Cul (e‘f’ + Vi — E) +eaVip=0 (5.38)
and
Ca Va1 + cor (s‘;’ + V- Ee) =0. (5.39)

Here we get energy shifts

Vi = (wi”wﬁg)‘ v ‘wi”wﬁg)> : (5.40)

Voo = (pi®617| V |ol8}) (5.41)
and

Vig = (wi”wﬁg)‘ v ‘wig)wﬁe)> : (5:42)

Var = (p®017| Vo l0) (5.43)

are resonance interaction terms which are also important for energy-transfer pro-
cesses. Evidently, a nontrivial solution is obtained only if

8(18) + Vi1 — E. \%P)

=0. 5.44
\%51 8(28) + Vo — E. 44

Let us first consider a homodimer, where both molecules are identical. For this

case £\ = £l = £09, Vj; = Vi, and Vi, = V3y, and from (5.44) it follows that

(69 + Vi — E)’ = Vi, (5.45)
leading to two eigenenergies:

Ep =94 Vi + Wy (5.46)
and

E=e94+ v -V, (5.47)

Thus, the transition energy of the dimer has changed as compared with the tran-
sition energy of a constituent single molecule. The energy levels have split by the
amount 2Vj; (so-called Davydov splitting) and the average energy of these two lev-
els has been shifted with respect to the ground state by the amount V;; — V,,, which
is the so-called displacement energy 4 (see Figure 5.2). In fact, 4 is comparable to
the spectral change which a molecule experiences when it goes from the gas phase
into solution, and using the definition given by (5.26), we get

(ol ) = o' (r0)) ()
a4 = ke/dn/drz | , (548)

r— 1y
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1 1 et + Via
€ e
U, 74
El *Vlg
—>
EO EO 50

Figure 5.2 The energy scheme for the homodimer, where ° and ¢ are the energies of the
ground and excited states of the monomers, 4 is the displacement energy, and Vi3 is the reso-
nance interaction.

where i = 1 and j = 2 in this case. Here p(igg)(r) is the total charge density of
the ith molecule in its ground state and p!**)(ry) is the charge density of the elec-
tronic excited state of the ith molecule. For neutral molecules we have

f drp®™(n =0, (5.49)

where (ss) is either (gg) or (ee).
The value of the resonance interaction Vj, can also then be given in terms of
transition charge densities accordingly as

(ge) (eg)
Vi, = ke/dn/dhw , (5.50)

|ry — 12|

where p(igg)(r) and p(igg)(r) represent the transition charge densities of molecule i.
When the intermolecular distances are larger than the molecular dimensions, a
dipole approximation for charge densities is often assumed and the resonance in-
teraction can be calculated by using an expression for the intermolecular interac-
tion defined by (5.30), thus giving

_ (11 1,) (Raz - p1)(Ruz - 45)
Vi = ke|: Rl 3 Ryl , (5.51)

where pt ; = ((p}g) |D j |<p§.g)) is the transition dipole moment in the jth molecule.

In the case of nonidentical transition energies of the monomers (let us assume
that the difference equals 0), the calculation of the excitonic eigenenergies and
eigenstates can also be obtained by solving (5.44). It is then convenient to define
a new zero energy as the average of the transition energies of the two molecules.
Then one of the molecules has the excited-state “site energy” equal to §/2, and the
site energy of the other molecule is —d/2 (see Figure 5.3). To find new eigenener-
gies we have to solve the following pair of equations:

o
Cel (E - Ee) +caVi2 =0, (5.52)
o
CaVart+ | =5 = E.)=0. (5.53)
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Ey

€

Figure 5.3 The energy scheme for the heterodimer, where % and e] are the energies of the
ground and excited states of the ith monomer, and 0 is the difference between the excitation
energies of the monomers.

The solutions can be written as

Fi=VpV1+T?, E=-VpJ/1+ 172, (5.54)

where

0

=-—. 5.55
W, (5:33)

Since |ce|? + |ce2]|? = 1, we can replace c.q and ¢, by cos a, and sin a,, respec-
tively, where a, still has to be determined. After insertion of (5.54) into (5.53), it
directly follows that «, is given by

tana; = - + 1+ 17,
tana; = - — 1+ 17, (5.56)

and in general
1
tan2a, = T (5.57)
The angle a, is sometimes denoted as the mixing angle of the dimer. Explicit ex-

pressions for the coefficients are now

1
Cc11 = (558)

\/1+ (—1“+«/1+—F2)2 ,

¢ = cnn (—r V1t FZ) , (5.59)

cy = ! , (5.60)
Jie(cr-viry

en = (-I = V1+ rZ) . (5.61)
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In the case of identical molecules, 6 = 0, and the coefficients are ¢c;; = 1 /ﬁ,
C1p = 1/ﬁ, Cy1 = 1/\/5, and ¢y = —l/ﬁ, indicating that exciton states are com-
pletely coherently delocalized over the whole dimer. The two excited-state energy
levels are split by two times the “resonance” interaction energy Vj,. In the opposite
case, when Vj; < 0, we approach the case of independent molecules, both for
the energy splitting and for the degree of delocalization, and the excitations on the
different molecules maintain their identity:

) 2V
Fip =+ (1 + 6—;2) : (5.62)

The probability of finding the excitation on either of the molecules is (1/(217))? and
1 — (1/(2I))?, respectively, that is, with large I' the excitation is almost entirely
localized on the individual molecules.

Another valid state of a dimer is one where both monomers are excited, the so-
called doubly excited state. In the Heitler-London approximation the wavefunction
of the double excited state is given by

W =), (5.63)
and the excitation energy is
Ef=¢eP + e + K. (5.64)

Here

ot fon [ ]

|r1 — 13

describes the excitation energy shift due to the presence of another excitation. Of-
ten this coupling is denoted as K-type coupling, and the resonance interaction is
denoted as J-type coupling. Since there is only one doubly excited state in a dimer,
itis an eigenstate of the system.

5.4
Frenkel Excitons of Molecular Aggregates

Now let us consider a molecular aggregate of a fixed number N of molecules or-
ganized in a specific geometrical configuration. Each molecule consists of a large
number of electrons and nuclei; however, for the present purpose, only valence
electrons need be considered. If the electrons (and nuclei) cannot interchange be-
tween different molecules, chemical reactions and electron exchange can be disre-
garded. We denote by r(jm) the coordinate vectors of all relevant electrons belonging
to molecule m. R%m) are the corresponding coordinates of the nuclei. The Hamilto-
nian of such a complex can be written as

m>m’

Hy =Y Hut+ Y Vw (5.66)
m mm
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5.4 Frenkel Excitons of Molecular Aggregates

where H,, is the Hamiltonian of a single isolated molecule and Vim is the inter-
molecular Coulomb interaction.

If the molecules were noninteracting, the state of the whole aggregate would be
a direct product of local molecular states. Similarly to the case of the dimer, let us
assume that each molecule can be in two quantum states: the ground state and an
excited state. The ground-state wavefunction of the complex can then be written as

N
lg) =], (5.67)

corresponding to the state where all molecules are in their ground states. The excit-
ed state of the complex is obtained by promoting one molecule to its excited state:

N,nsj
lej) =0 T . (5.68)

By changing the place of excitation in the aggregate, one can obtain N possible
singly excited states (single-exciton states). The doubly excited states (double-exciton
states) are obtained by promoting two molecules in the aggregate to their excited
states:

N,n#k,l
| fun) = o0 T] ¢ (5.69)

By counting all possible pairs of molecules, we obtain N(N — 1)/2 double ex-
citations. We can continue this procedure until we arrive at the state where all
molecules are excited. This is the single highest possible excited state of the aggre-
gate:

N
Iy =]Te . (5.70)

In aggregates of the same type or similar types of molecules, the states with the
same number of excited molecules form a band (manifold) of states with simi-
lar energies. In the following we consider only ground-state, single-exciton, and
double-exciton manifolds. These three bands are the only bands directly accessible
in a resonant third-order nonlinear optical laser experiment. Higher-lying states
can be disregarded.

The basis set defined above is easily translated into an excitation creation/annihi-
lation operator picture (see Section 4.9). As already described, the vacuum state |g)
is the ground state of the aggregate having no excitations. This can be considered
as the vacuum of particles. The state where the mth molecule is excited (a single-
exciton state) is obtained by |e,,) = EMg) and for a pair of excited molecules (a
double-exciton state) | fiun) = Bl B} |g). Since a molecule cannot be excited twice,
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the particles and excitations behave as fermions on the same molecule; thus, the
particle operators B satisfy the Pauli commutation relation [25, 26]:

[én, éj‘n] = 0 (1-28] B0 - (5.71)
In the space of single and double excitations, the Hamiltonian of the aggregate

can be represented using these operators:

N

N
7= BB + Z]Ué”' B+ Kl}é"'é"'é B;, (5.72)
i i j i j

where

(g8) (g8)

—p;7(r) ) p7(r2)
O+ ke Z/dn/drz |r - |) d (5.73)
1—n

j#Fi

is the transition energy of the molecular excitation in the presence of other
molecules in their ground states. The parameters are as follows: s(io) is the transi-
tion energy of the isolated molecule, p(igg)(r) is the total charge density of the ith
molecule in its ground state, and p(i“)(rl) is the charge density of the electronic
excited state of the ith molecule. Similarly to the case of the dimer described in the

previous section, there are two types of intermolecular couplings:

1‘1 P ( 2)

= ke / dry / dr2 P L (5.74)
lr1— 12

is the resonant Coulomb interaction between transition charge densities, and

ce) ) ee) \ _ (g8)
Kij = ke /dh/dfz pl ") gg( 1)) (pj 2 pjgg ("2)) (5.75)

[r1 — 13

describes the excitation energy shift due to the presence of another excitation.
K;; may be understood as the exciton—exciton binding parameter. When the in-
termolecular distances are larger than the molecular dimensions, the dipole ap-
proximation for charge densities is often assumed [24]. It approximates all charge
densities by simple dipole vectors: transition dipoles u; represent the transition
charge densities p(ieg)(r) and permanent dipoles d; represent the difference densi-

ties (0\°”(r) — p®¥(r)). In that case we obtain the dipole—dipole coupling expres-

sions:
o [eimy)  (Rij-p)(Rij-pj)
e R 679
and similarly
K= k| @) (Rl #j) (5.77)
ij |Rij|3 |Rij|5 ’ :
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5.4 Frenkel Excitons of Molecular Aggregates

The dipole vectors can be obtained from charge densities by calculating their first
moments. Alternatively, they are given by wavefunction-based dipole operator ex-
pectation values: u; = (g|Djle;) and d; = (¢;|Djle;) — (g|D,lg).

Due to the equivalence of the molecules in the aggregate (assuming that 9 = ¢),
the corresponding excited-state wavefunction has to account for the probability of
each of the molecules being excited (see the perturbation procedure for the degen-
erate states described in Section 4.7). Thus, we define a single excited state of the
aggregate as a superposition of molecular single excitations (in the same way as we
did for the dimer; see (5.33)):

llye = Z Cem éy’n |g) , (578)

where the expansion coefficients are indicated by c,,,. The doubly excited state is
similarly

k>1

@f = Z Cﬁ(kl)ézémg) . (5.79)
kl

The coefficients c.,, and Cy ) are determined from the Schrédinger equation for
the aggregate.

Let us consider as an example the translationally invariant molecular aggregate.
These types of systems are relevant for so-called | aggregates and molecular crys-
tals [23, 25, 27]. The translational invariance implies that all molecules are identical.
As we described in Section 4.6.5, the wavefunction of a one-dimensional aggre-
gate of N sites has to be an eigenfunction of the translational operator T,,, where
n=0,1,..., N —1is an integer number of translations,

T, W, = e *ry, (5.80)

where k is the quantum number of the translational operator. In the case of a single
equivalent molecule per unit cell, it follows directly from (5.80) that

Cen(k) = \/Lﬁeik” , (5.81)

which implies that all molecules in the crystal are equally likely to be excited. For
the eigenenergies we get

Ev = (Wi Hu| W) — Eg = e + 4 + L(k), (5.82)

where ¢ is the molecular excitation energy, A is the renormalization due to other
molecules (see Section 5.3), and

Lk) =) Jome*™, (5.83)

where

Jom = (wff)cpif)’ Viem

) (5.84)

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

115

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

116

Chap. c05 — 2013/6/3 — page 116 — le-tex

5 Quantum States of Molecules and Aggregates

is the resonance interaction between excitations on the nth and mth molecules,
respectively. Again due to translational symmetry, the value of L(k) is independent
of the molecular position (taken as zero in (5.83)).

Equation (5.81) demonstrates that the excitation is delocalized with equal proba-
bility over the whole aggregate of equivalent molecules, and the coefficients c,, (k)
differ only by their phase factors. The excitations corresponding to eigenstates are
defined in the k-space (or the reciprocal lattice space) and they are usually termed
excitons. The exciton energies Ej, determine the exciton energy band or spatial dis-
persion of the exciton energy. The number of energy levels E; is determined by
the size of the system. Taking periodic boundary conditions, we assume that the
system contains N molecules along the s-axis, and it is periodically repeated along
this axis. Correspondingly, translation of the system as a whole does not change the
wavefunction defined by (5.78). The corresponding N, values for k; are determined
as follows [21, 23, 25]:

ke="—j,, (5.85)

where s enumerates the crystallographic axes (in the case of the crystal). k; is the
projection of the wave vector k on the s-axis. Here the intermolecular distances
are expressed in terms of the distance between two nearest neighbors along the
corresponding axis. The distance between the nearest neighbors is assumed to be
equal to unity. Thus, j; is an integer with possible range of values

N; N;

—— < ji<—=. 5.86

) Js = ) (5.86)
For example, if only the nearest-neighbor interaction is important in a linear peri-
odic system with N sites, we have

L(k) = 2 Jo cos(k) , (5.87)

and —m < k < m.
For small absolute values of k, the exponent in (5.83) can be expanded in a series
which gives the following approximation of (5.82):

k2

2mg

Ey = E + (5.88)

Again s reflects the crystallographic direction, m is the effective mass correspond-
ing to the exciton motion along this direction,

—H2
Mmy= —=—n, 5.89
Zn n%]()»” ( )
and
Ec=e+A+) Jon. (5.90)
n
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Due to the dependence on the wavevector direction s, the expression for the
eigenenergy, (5.88), is a nonanalytical function for very small k values. Accord-
ing to definition (5.86), the difference between the nearest k values along the s-axis
is very small for very large values of N;. For small k values, the exciton can be
considered a quasiparticle characterized by the phase and group velocity. A large
resonance interaction, which corresponds to the small mass, gives rise to excitons
with high mobility.

Let us now consider a more complex periodic structure which contains o
molecules per unit cell. In this case we will obtain a number (o) of different sub-
bands (so-called Davydov subbands). We have to choose the following excitation
amplitudes (wavefunction expansion coefficients)

_ L ke 5.91

Cav TN Uav(k)e , (5.91)
which diagonalize the Hamiltonian, (5.66). The matrix u, (k) is unitary, and the
index a enumerates molecules in the unit cell; r = n + p,, where p, are the
coordinates of the molecules within the unit cell, and v accounts for splitting of
the corresponding degenerate molecular states. This gives rise to a number o of
molecular subbands in the exciton band. The transformation coefficients have to
be normalized:

> lear(k)?=1. (5.92)

Due to the presence of o molecules per unit cell, the numbering by »n has to be
changed into na everywhere. Now the exciton energies are determined by solving
the Schrédinger equation given in (5.82), which gives the following set of equations
for coefficients u ¢, (k):

o

S le + Au)dup + Lap®upo(t) = Eu(k) it (k) (5.93)
p=1

where
Ay =Y (o508 Vo |00 Sh) — (0520 Vams [ofh0))]  (5:94

mp

is the displacement energy and

Lag(k) = Z(w%wﬁf}‘ Viamp w&g&w,‘qjg)e“‘“mﬂ—w (5.95)

is the resonance interaction matrix for an arbitrary k value. The exciton spectrum
is determined via the corresponding characteristic equation

det(Logs(k) + Ouple + Ao — Eo(K)]) = 0. (5.96)
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The matrix given by (5.95) is Hermitian, and all o values of E, (k) are correspond-
ingly real. They define exciton subbands, and the phenomenon of the organization
of the band into subbands is called Davydov splitting [23, 25]. It should be empha-
sized that the procedure we performed for periodic molecular aggregates in three
dimensions represents an extension of the simple case of a dimer, which we de-
scribed in Section 5.3.

If the system contains two molecules per unit cell, the unitary matrix u, (k) can
be written in the following form:

[ cosg(k) sing(k)
uav(k)_(—sin(p(k) cosw(k))' (5-97)

The corresponding Hamiltonian matrix which determines the left-hand side of the
set of (5.93) in this case becomes

€+ Al + Lll(k) le(k) )
. 5.98
( L21(k) €+ Az =+ Lzz(k) ( )
Diagonalization of this matrix leads to the following analytical solution:
4,4+ 4
Eok) = e + 11402
2
Li1(k) — Lyy(k) + A1 — 45\
_(_1)1,\/( 11(K) 22(2) + 44 z) Lok, (5.99)

where v = 1,2. For each energy band E, (k) the transformation function ¢, (k)
in (5.97) is determined by the following relation:

tan @, (k) = e+ +LL1:}I(¢I;) — E, (k)

(5.100)

If Ay = A; and Lyq(k) = Ly,(k), then the value of the Davydov splitting according
to (5.99) is

AE(k) = 2L15(k) . (5.101)

Summarizing, the resonance interaction between molecules within the unit cell
leads to Davydov splitting, which for every k gives rise to two new states. The
amount of splitting between these states leads to two subbands. In general, the
number of subbands is equal to the number of molecules within a unit cell.

5.5
Wannier—Mott Excitons

Let us now consider an atomic crystal or a crystal with covalent/ionic bonds. In
such a crystal, interactions between crystal constituents are not weak, and the
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Heitler-London approximation is not applicable. Due to strong interactions the
electrons can be considered as belonging to the whole crystal and are character-
ized by a periodic potential, instead of a single lattice site [21, 23]. To understand
the dissipative electron dynamics in a solid of this type, it is sufficient to consider
an electron in a periodic potential as we did in Section 4.6.5. For simplicity, let us
assume there is a single electron in such a crystal. In three dimensions the Hamil-
tonian can then be written as

VZ
2mMe

H=———+4V(r), (5.102)
where V(r) is a periodic function with the property V(r) = V(r + a). Here a is the
translational vector of the system — the smallest possible vector — which translates
the system into itself. According to the Bloch theorem (Section 4.6.5) the wavefunc-
tion of this Hamiltonian must have the same translational symmetry apart from a
different phase, so the wavefunction is of the form

Y (r) = ¢(r) exp(ika) . (5.103)

Here ¢(r) is a periodic function with translational invariance ¢(r) = ¢(r + a).
This allows us to consider free electrons distributed in the conduction band of the
crystal. The electron is characterized by a specific effective mass in the vicinity of
edges of the band [21].

The exciton spectrum should be considered as defined by two particles: an elec-
tron in the conduction band and a hole in the valence band. They interact with each
other by Coulomb coupling (see Figure 5.4). The Hamiltonian of such an electron—
hole system (the so-called Hamiltonian of the Wannier—Mott exciton) can be written
as

. be | Pi kee?
Ayy = —— + h ¢ , (5.104)
2m. 2my |re - Th|
Frenkel CT Wannier-Mott Self-trapped
exciton exciton exciton exciton
Tex < @ Tex > @

~O-

o @ © ‘, [88 :
(a) (b)

Figure 5.4 Possible models of excitons in
crystals with the translational constant a.
The zero-radius (Frenkel) exciton, the

intermediate-radius (charge-transfer, CT) ex-

citon, and the large-radius (Wannier—Mott)
exciton are presented in (a), and the pos-
sible lattice polarization in the case of the
self-trapped excitons is shown in (b).
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where p, and p,, m. and my, and r. and ry, are momenta, masses, and radius vec-
tors of the electron and hole, respectively. This is a two-body problem, conveniently
solved by transforming it into a problem of the center of mass and the relative mo-
tions. After the transformation we obtain the following equivalent representation
of the Hamiltonian:

P’ P ke

Py = — &4
WM 2(me +my)  2u r

: (5.105)

where P and p are the momenta of the center mass and the relative movements,
respectively. The quantity r = |r. — ry| is the distance between the electron and the
hole, and u is the reduced mass:

1 1 1

— = —. (5.106)

u Me my
The new coordinates describing the movement of the center of mass (as a free
particle) and the relative movement of the electron and the hole are independent.
The wavefunction of the problem can then be presented as

1
Y (R, r) = —eXRp(r), 5.107
(R,7) Ji (1) (5-107)
where the initial factor is due to the normalization of the wavefunction. Here L
is the linear size of the crystal, d is its dimension, and K is the wavevector corre-
sponding to the translational symmetry of the center of mass of the electron and
the hole. The relative movement of the electron and the hole is described by the
wavefunction ¢(r). The problem is equivalent to that of one particle in a Coulomb

potential, and it correspondingly exhibits a hydrogen-type energy spectrum [28]:

E

Ey=E—————. (5.108)
(n + %)

Here E; is the energy gap for the transition of the electron from the valence band
to the conduction band (the reference point of free electrons and holes), and E. =
Ry kept/ me, with Ry representing the Rydberg energy of the hydrogen atom. Simi-
larly, the exciton binding energy and the exciton radius corresponding to the lowest
excited state (n = 1) can be determined, resulting in

2

Eb:Eg_Elzm

E. (5.109)

and

a-1

de , (5.110)

Tex =

where a. = apmc/(keut) is the effective Bohr radius, and ag is the Bohr radius
defined by considering the spectrum of the hydrogen atom.
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Figure 5.5 The energy levels of the Wannier-Mott exciton.

For typical parameters of a semiconducting crystal, E. is on the order of tens or
hundreds of millielectronvolts. In the case of d = 3, the exciton binding energy is
E. and rex = a.. In the case of d = 2, the exciton binding energy increases four
times and the exciton radius decreases four times, while for d = 1, E;, = oo and
rex = 0. The divergence of the exciton binding energy and the J-type wavefunction
in the case of d = 1 can be understood as follows: in the case d = 2or d = 3,a
charged particle can freely move around the origin of the Coulomb potential, while
in the case d = 1, it would have to move through the origin because of the spatial
restriction. In the origin the coupling has a pole. A typical example of the quasi-
one-dimensional system, where the Wannier—Mott excitons are expected, is carbon
nanotubes [29].

By taking into account the energy values corresponding to the center of mass, we
can express the total eigenvalues of the exciton energy spectrum as

h? K*
Bxn = Bt 3o — s (5.111)

Thus, the exciton spectrum shown in Figure 5.5 defines the bound electron and a
hole freely moving together through the crystal. Their binding states are quantized
in a hydrogen-atom fashion.

5.6
Charge-Transfer Excitons

In addition to neutral, small-radius (Frenkel) excitons, where the excited electron
remains correlated with the hole and both are located on the same molecular site,
excited states where the excited electron is transferred to the nearest or next-nearest
neighboring molecules are also expected to occur when exchange of electrons be-
tween molecules is allowed. Such states, which are intermediate between Frenkel
excitons and Wannier—Mott excitons, are called charge-transfer (CT) states (see Fig-
ure 5.4) [23]. Similar to Wannier—Mott excitons, these CT states are positioned be-
low the lowest conduction band, because of the Coulomb interaction between the
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electron and the hole (or between molecular ions) freely moving together through
the crystal. Evidently, the CT state is determined by the ability of the molecules to
accept/donate electrons. This ability corresponds to the molecular characteristics,
such as the ionization potential (I5) and the electron affinity (Ag). Due to the pres-
ence of charges in the system, the polarization energy (Pen(r)) of an electron-hole
pair separated by some distance r also has to be taken into consideration. The po-
larization energy reflects the adaptation of the system to the presence of a CT state.
Thus, the energies of the CT excitons are given by [23, 27]

Ecr = Ig— Ag — Pan(r) — C(1) , (5.112)

where C(r) denotes the Coulomb energy of the charged pairs separated by dis-
tance r [30].

Evidently, the existence of CT excitons is expected in heteromolecular crystals
constructed by electron-donating and electron-accepting molecular pairs. The low-
est CT state corresponds to the transfer of an electron from the highest occupied
molecular orbital (HOMO) of the donor molecule to the lowest unoccupied molec-
ular orbital (LUMO) of the acceptor molecule. From the theoretical point of view,
the ion-pair states must be included in the complete basis system of wavefunctions
describing excited states of the crystal. Correspondingly, the CT states interact with
the Frenkel excitons and the two types of states intermix, resulting in a change of
the resonance interaction values for the Frenkel excitons.

CT excitons are usually precursors to photoinduced generation of charges. In-
deed, the optically excited Frenkel exciton states can be in resonance with the CT
states. A transition from the initial Frenkel-type exciton state to a CT state is pos-
sible due to such resonance, and a separation of charges in the presence of an
external electric field is expected. In homomolecular complexes and crystals, opti-
cal transitions corresponding to CT excitons are usually extremely weak, and they
are not expected to be resolved in the absorption spectra. However, this is not the
case for heteromolecular systems arranged in sequential stacks of electron—donor
and electron—acceptor molecular configurations. In such systems, the CT excitons
are well resolved in both absorption and fluorescence spectra. Due to the strong
polar character of CT excitons, the effect of the exciton self-trapping is significant
in such systems, resulting in large values of the Stokes shift.

A combined representation of all excitations can be obtained by using the so-
called tight-binding description [31]. In this model, each molecule is represented
by two electronic orbitals: the HOMO and the LUMO. Let us define operator em(em)
which creates (annihilates) an electron in the LUMO of site m and operator h] (h )
which creates (annihilates) a hole in the HOMO. When the electron in the LUMO
and the hole in the HOMO reside at the same site m, we have molecular excitation
(the Frenkel excitonic state m* < &hhl, |g), where |g) denotes the ground-vacuum
state). On the other hand, when the electron and the hole are excited at different
sites m and n, we obtain the CT state n™m™ < &, h}; |g). These states are illus-
trated in Figure 5.4.
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The Hamiltonian of the system in the tight-binding model is [31]:

Hs =Y te el ey + Y th hih,
m,n m,n

m#n
+ > wa el hl ke, =Y Ve el hlih,e,,
1 m#“n 1m;én N
+3 > VEeh el et + 3 > v iR h,
m,n m,n
1 k#ml#n L o ~
+ 7 D D Kermndyh R Ry (5.113)
km Ln

Here t¢,, (th,) is the electron (hole) hopping rate between LUMOs (HOMOs).
W4, is the dipole-dipole-type resonance interaction between excitons at sites m
and n. Vy,, = V(r, — ry) is the electron—electron Coulomb repulsion between
sites m and n, VB = V(r, — r,) is the hole-hole Coulomb repulsion between
sites m and n, and Ve = V(r,, — r,) is the electron-hole Coulomb attraction be-
tween sites m and n. Note that in the simplest case, V¢, = VI = VeI however, at
short distances these values may be not equal since the delocalization of electrons
and holes at the single site is usually different. Additionally, terms representing
coupling K responsible for shifting the energies of the doubly excited states are
also added to the Hamiltonian. They are, however, of higher order in terms of the
number of creation and annihilation operators.

For the single-excitation manifold, where one electron and one hole are created,
we have states |eph)) = é}i; ﬁ“g) The matrix elements of the Hamiltonian for the
singly excited states are as follows [30]:

(exhi|Hslemhy) = £5,,01n + 11 Okm — VEO1,0km
+ Wi (1= Okm)01kOmn - (5.114)

These thus give the following matrix elements:

Ear = 15, + tig — Vig (5.115)

Eati— = by + toa— Via (5.116)

Jarpr = W5y, (5.117)

Jas b= = 5:0ab + tyOuac (5.118)
and

Jatb—cta= = tg0ac + thOba - (5.119)

Here &, is the excitation energy of the Frenkel exciton a™*, €+, is the excitation
energy of the CT state aTh™, J,+p+ defines the mixing between Frenkel exciton
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states a™ and b*, J,« ,+ .~ is the coupling between the Frenkel exciton state ™ and
the CT state b™¢™, and J,+,- +4- is the coupling between CT states a™ b~ and
¢t d~. This information is sufficient to describe the single-excitation properties.
In the double-excitation space, two electrons and two holes are excited; thus, we
have states |eyehph,) = é'}; él'ﬁln ﬁ£|g), with k > | and m > n. The Hamil-
tonian matrix elements for doubly excited states are given by elements of type
(ekelhmhn|I:IS|ek/el/hm/hn/). Three kinds of doubly excited states are obtained:
(1) Frenkel excition—Frenkel exciton states a*b*, (2) Frenkel exciton—-CT states
a*btc™, and (3) CT-CT states with two electrons and two holes aTh~cTd~.

The transformations to the single-excitation eigenstates

le) =Y Yeulech)
Kl

and double-excitation eigenstates

k>l m>n

1) =D Yrtimalererthmhy)

kl mn

are given in terms of transformation matrices ¥, and ¥ g1y, which are calcu-
lated by solving the eigenvalue problems of the Hamiltonian.

It is noteworthy that a presentation of this kind is convenient for describing non-
linear spectroscopy data of the system where both types of excitons occur [31].

5.7
Vibronic Interaction and Exciton Self-Trapping

The exciton energy states discussed so far are defined at fixed positions of the nuclei
of the molecules and their surroundings. The nuclear motion modulates the energy
levels and this has an influence on the exciton spectrum. The effect can be obtained
by adding the vibrational Hamiltonian defined for every molecule. In the adiabatic
approach we consider (5.22) and the exciton Hamiltonian, (5.72). We thus take

N N N
. . . .
H=Y &B/Bi+) JijBBj+) KB BlBB;
i i#] i)

ho! 0? A ;
+ Z > (in,s - 02 ) + Z Bi’ B; (asthQi,s + 5i,sQ2i,s) ,

1,5

(5.120)

where o' is the s vibration in the electronic ground state of the ith molecule along
the Q;, coordinate, a; is the displacement of the excited-state potential of the ith
molecule along the s coordinate of the vibrations, and d;; is the change of the
vibrational energies in the electronic excited states, thatis, d;; = (hw® —hw?)/2.
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5.7 Vibronic Interaction and Exciton Self-Trapping

A similar, however, more general Hamiltonian determining the exciton-phonon
interaction is defined by assuming that all parameters of the exciton Hamiltoni-
an depend on the nuclear coordinates. Apart from the kinetic energy terms, the
Hamiltonian reads

H= ZS(RB B +Z]U(RB B; ~|—ZKU(R TBiB; . (5.121)
iF#j i j

The first term reflects the R dependence of the displacement energy. The second,
resonance interaction, term reflects the lattice point displacements and thus the
lattice deformation. The third term, which is the exciton—exciton interaction, nec-
essarily depends on the lattice deformation.

Let us consider the properties of a single excitation, so the third term in the
Hamiltonian can be disregarded. In a molecular crystal the excitations and vibra-
tions are considered as delocalized excitons and phonons characterized by their
wavevectors k and g, respectively. The exciton—phonon Hamiltonian is then given
by [21, 25, 27]

H = Ao+ A + A + A2, (5.122)
where H, is the R-independent exciton Hamiltonian, and

Ton = 3 h0(@) ( Blabo + 5 5

Fypw = Y hog(q) | bighog + 5 (5.123)

5.q

is the phonon Hamiltonian with phonon frequency w;(g). The index s enumerates
the phonon branches, q is the phonon wavevector, and b! sq and b 5,q are the phonon
creation and annihilation operators, respectively. The Hamiltonian

A

gl

o= J—ZF(k q) BT (k + q) B(k)i;(q) (5.124)

s,k.q

represents the momentum transfer from the phonon to the exciton. Here B(k) and
BT (k) are exciton annihilation and creation operators for wavevector k,

B(k) = B,e ik (5.125)
SO
(a similar canonical transformation is used for the creation operator), and

o(q) = bog+ bl 4 (5.126)

is the phonon coordinate in the second-quantization representation (see Chap-
ter 4). The term

Al = sz(q BT (k) B(k)9s(q) (5.127)

skq
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is caused by the expansion of the displacement energy. Here F;(k, q) and 7(g) are
given by the following equations:

. [ n 5 9 .
Ek,q) = Y @)/ | | == + 9" — | Jou | e*™ (5.128)
l_mz;ﬁo 2M;wy(q) | \ OR) oR}, ) 7" |

7.(q) = gy 0 am O
Ps@) = €l CYRNP |:(8R(l) + eld 3%)4‘40 , (5.129)

I,ms0

and

where €!(q) are the components of the unit vector of polarization of the s compo-
nent of the phonons, 4, is the displacement energy of the mth molecule, N is the
number of unit cells in the system, and M; is the corresponding nuclear mass.

By comparing these terms of the exciton—phonon interaction, we can consider
two limiting cases. When

A > Ay (5.130)
we are dealing with a weak exciton—phonon interaction which leads to exciton scat-
tering by phonons. The excitonic properties are retained and the phonons cause
shifts of energy values and induce decoherence. In the opposite case, when

Al <« A, (5.131)
strong exciton—phonon interaction prevails and the Hamiltonian Hi(jt) determines
the lattice deformation in the region where the exciton is present. In the strong-
coupling limit, the exciton interaction with the phonon field can become so strong
that it can result in exciton self-trapping due to lattice deformation in the vicinity
of the excited molecule (see Figure 5.4).

Let us briefly describe the outcome of exciton self-trapping. There are two possi-
ble pathways for evolution of the exciton: (1) free coherent exciton formation in a
rigid lattice corresponding to delocalization and (2) self-trapping of the excitation
caused by lattice deformation with a subsequent localization. The loss of energy
caused by the lattice deformation is called the energy of the lattice relaxation Ejg.
On the other hand, the measure of the loss of energy resulting from free exciton
relaxation is half the exciton bandwidth, B = Ej,nq/2. The ratio g = Ejg/B is used
as a measure of the strength of the electron—phonon coupling and it is called the
constant of the exciton—phonon coupling. Thus, when g < 1, exciton delocalization
is most favorable, and when g > 1, exciton self-trapping is more probable. One can
define the energy of exciton self-trapping as Es = B — Ejg.

Due to the possibility of experiencing exciton self-trapping (or exciton—polaron
formation), the dynamics of the excitation defined by (5.122) is very complex. Be-
low we will present an approach which can be used to describe the exciton dy-
namics in the presence of interaction with molecular vibrations/phonons. Thus,
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5.7 Vibronic Interaction and Exciton Self-Trapping

let us consider the Hamiltonian defined by (5.122) by introducing the simplified
parametrization of the exciton—phonon coupling:

A=Y JunBlBu+ Y weblby+ > gquBl By (E'gH}q) . (5.132)
n,m q g

where g, is the linear coupling strength between an exciton state at site n and a
phonon mode g.

The dynamics of the system can be derived using the Dirac—Frenkel variational
principle [30]. For this purpose let us assume there is a trial wavefunction for the
system to be characterized by a set of parameters {x,(t)}; thus, [¥) = [{x,(t)}). If
we use the Hamiltonian and the trial wavefunction, the Lagrangian L is given by

<>

d

L= (¥ %W A, (5.133)

where for simplicity 7 is assumed to be 1 everywhere in the following of this sec-

tion and the double-overhead time derivative (‘P(t)|i/2? J0t| ¥ (t)) is defined as
Y2 (O (1) — (F ()W (1))-

If the trial wavefunction does not obey the time-dependent Schrédinger equa-
tion, then

.d s
(IE - H) W () = |6(t)) (5.134)

where |0 (t)) is the deviation vector. Our aim is to minimize this value, resulting
in a set of equations for the parameters {x,(t)} that make our trial wavefunction
as close as possible to the exact wavefunction of the system. In order to do this, a
variation of the Lagrangian with respect to the parameters is performed to obtain a
set of Euler-Lagrange differential equations.

For minimization it is usually convenient to adopt some specific trial functions.
Let us consider now the so-called Davydov D1 ansatz [32] as the trial wavefunction:

Whi(t) =Y 3 an(t)Biexp | D Agu(t)b] —hc. | +]0), (5.135)
n q

with the set of time-dependent variational parameters «, denoting the exciton am-
plitudes and A4, characterizing the vibrational displacements. This form denotes
the vibrational displacement of a coherent vibrational wavepacket due to the elec-
tronic excitation (notice the form of the displacement operator (4.300)).

To obtain equations of motion for the wavefunction parameters we should first
construct the Lagrangian L (5.133) as a function of a, and 4,4,, and the equations
of motion will be given by a set of Euler—Lagrange equations:

d (oL dL
o (37) 5 =0 (5.136)
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At \oi,, )| g (-137)

First, we calculate the time derivative of the ¥p; (t) trial function
Wyt = S B L Agnbl = L (A it
Dl()_z n an+anZ qn q_z(qn qn+C.C.>
n q
X €xp Z’lqni’g —h.c.|]0). (5.138)
q

Using (4.294)—(4.299) we get
(0] exp (/l;‘nl:)q - h.c.) (iqn;}g - h.c.) exp (Aqni)'g - h.c.) |0)
= Agndiy = Agnhi, (5.139)
which leads to the overlap of the wavefunction and its derivative:

(Vo1 (1) Poa(t) = D | éwatly + %|an|2 Eq: (iM;;n - c.c.) . (5.140)

Substracting the complex conjugate of this expression from itself and simplifying
the result, we obtain:

<>

0
('J’D1(t)|¥|q’m(t)) =

3 ana:—a:anJr|an|zz(,iqn,1;n_i;n/1qn) . (5.141)
q

n

Second, calculating the expression for (Wp;(t)| H| ¥pi (t)), we break the result into
three energy terms:

Ee(t) = Jn@n* Smn » (5.142)
Epn(t) = Y laul’ Y wqlignl, (5.143)
n q
E(t) = 2 lal Y ggn (A + 2an) (5.144)
n q
where
Spm = €xp zq: [A;"niqm — % (1Agnl? + |/1qm|2)} (5.145)
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is the so-called Debye—Waller factor. Ey(t) describes the electronic Hamiltonian
part, Epy(t) denotes the phonon energy and Ein(t) is the phonon—electron interac-
tion part. Combining these expressions we find the resulting Lagrangian as

L= %Z dna:—d:an—i—|an|ZZ(iqn/lZn—c.c.)
n q
_Z]mnsmna;an _Z|an|zzwq|/‘{qn|2
m,n n q
=1l Y g (A + 2an) - (5.146)
n q

This Lagrangian describes the system of coupled electronic and vibrational
modes with respect to the trial wavefunction. The Euler-Lagrange equations give
the following terms

d [/ dL i
— =) =za; 5.14
dt (aan) 24 (5.147)
JL i, * i * 2 *
Ba. = —5 0 + 7% zq: (/'an/lqn —c.c.)
- Z ]mnsmna:; - a:: quuqn'Z
m q

—ay ) g (;an + /1;‘,1) , (5.148)
q
d [ oL iy, " " 2
n (%) =3 (a Uphgn + Anlydy, + |ay| l;}) (5.149)
aL i 2 * *
—a/,{qn = /l Z]mn mnamanllz;m

1
+ 5 Z]nmsnma:am;{;n + 5 Z]mnsmna;anl;n
m m

—lanlwody, — ol gen - (5.150)

Rearranging the terms, we obtain the differential equations for the time evolution
of parameters:

) i a*a
Ay = = Z ]nmsnmn—;n (l;n/lqm - qu'z) +cc |ay
4 2

2 a
|
. i .
_lz_]nmsnmam_zzgqn (/lqn‘i‘/lqn) dy, (5151)
m q

; a* am
Agn = Agn lZ]nm wm——— (Agm — Aqn)

—iggn - (5.152)
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This set of equations can be used to simulate the coupled dynamics. However, the
equations are highly nonlinear and special care should be taken when numerically
propagating these equations due to terms like a*a /|, |%.

A simplified D2 ansatz is sometimes useful for the description of phonon-like
modes, which are delocalized along the linear molecular chain. In this case we
reduce the variational parameter space by assuming 4,4, = 4,. The trial wavefunc-
tion then assumes the form

Wha(t) = A an(t)Blexp | D Aq(t)b] —hec. | ¢ 0), (5.153)
q

n

which assumes that the phonon wavelength is much longer than the size of the
aggregate. The resulting equations of motion are

dn :_iZ]nmam_%qu (/‘{q'i‘/‘{:;) Ap , (5154)
m q

dg=—iwghy —ig,. (5.155)

5.8
Trapped Excitons

Defects caused by chemical impurities or vacancies perturb the crystal lattice. If
the impurity does not fit well into the lattice, a ring of distorted host molecules will
surround the impurity. A similar distortion may surround faults or vacancies in
the host lattice. These misaligned molecules give rise to the so-called X-traps (for
Frenkel excitons) [23]. Evidently, the wavefunctions corresponding to the trapped
exciton states are not delocalized anymore and describe the localization character-
istics of the excitation in the vicinity of the trap. The localization radius correspond-
ing to this state is directly related to the trapping energy of the exciton, that is, the
shallower the trapped exciton, the larger the localization radius. As a result of the
increase of the exciton localization radius for the shallow trapped states, the optical
transition into these states dramatically increases, resulting in the so-called Rash-
ba effect [22, 24]. Detailed studies of the absorption and fluorescence spectra of
trapped excitons allow one to determine the parameters of the exciton band.

The problem of localization was formulated for the first time by Anderson in
1958 [23, 24]. It was demonstrated that due to sufficiently large randomly distribut-
ed disorder, the delocalization of the wavefunctions, describing the band states,
changes essentially: above a certain value of the disorder, a transition from the de-
localized to the fully localized state takes place. This transition is called the Ander-
son transition and the localization is called the Anderson localization. Among the
multiple models used to describe the energy spectrum of disordered systems [33],
the most widely used ones are based on the assumption of a random distribution
of impurities or other kind of imperfections within the crystal structure.
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The models which are based on random disorder of the excitation energies of
the molecules in the lattice (the diagonal disorder) assume variations only in the
transition energies, while the lattice itself remains unperturbed. Models taking in-
to account various aspects of the randomness of the molecular orientation and/or
their position have also been developed [33]. These models are mainly related to
amorphous systems, glasses, liquids, and gases which are called topologically dis-
ordered systems.

The surface of the crystal also disturbs the translational symmetry of the lattice.
Thus, the surface exciton states might also be present in the energy spectra of the
crystal. Their presence in the spectrum depends on the interplay of the exciton
parameters. They can be localized either above the exciton band or below it.
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The Concept of Decoherence

Quantum mechanics has changed physics not just by introducing us to new ob-
servable effects not predicted in the framework of classical mechanics (such as
tunneling, nonlocality, and discrete energy spectrum; see Chapter 5), but also by
fundamentally limiting the scope of practically attainable knowledge of the systems
studied. One aspect of these limitations is expressed by various uncertainty rela-
tions, (4.2). These are consequences of the wavelike character of the state in quan-
tum theory. Another limitation is embodied in the apparent probabilistic nature of
macroscopic measurements on quantum systems. It appears that for a measure-
ment of a particular quantity of a quantum system, the outcomes can be predicted
only in a probabilistic manner. We reviewed classical stochasticity in Chapter 3, but
the fundamental stochasticity embedded in quantum mechanics appears to be of a
more general kind. A single-value measurement of a quantum mechanical quan-
tity provides only very little information about the system before it was measured.
Only repeated measurements on identically prepared systems can provide us with
some idea about the distribution of the probability of finding the system with a par-
ticular value of the measured observable. This, on the other hand, can be calculated
from quantum theory, and compared with experiment, yielding exceptionally good
agreement. Thus, quantum theory seems to be limited to probabilistic predictions
about ensembles.

6.1
Determinism in Quantum Evolution

To conclude, however, that the time evolution of a quantum system proceeds in
some stochastic way would be a gross mistake. The Schrédinger equation is a com-
pletely deterministic equation for the quantum mechanical state, the time evolu-
tion of which is thus deterministic. This feature of quantum mechanics can be
demonstrated in the following experiment with quantum coin tossing.

Let us imagine a set of deep potential traps created by some switchable trapping
field and a particle prepared with probability equal to 1 in one of the traps (Fig-
ure 6.1a). We label this initial trap by index 0. The trapped particle can be in two
internal states, |R) and | L), left and right, respectively, which determine the direc-
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7 | \ 2R\
7 N\ 7 A
N\ 7 | \ 2
N— N\
C_l 71N 7 | \
N s
57 » \ / \\
1/4 1/2 1/4
t U > U/

(c)

Figure 6.1 Quantum random walk scheme:a  the random walk with an inversion in the mid-
particle is prepared in a periodic trapping field  dle (c). The boxed numbers give the outcome
in a trap with index 0 (a); the field is inverted of a classical random walk; the numbers in
and the particle moves to the right (left) when  circles give the corresponding quantum result
its internal state is |R) (|L)) (b). Four steps of  for traps —2, 0, and 2.

tion in which the particle will move when we invert the trapping field (Figure 6.1b)
and apply some external field. A laboratory realization of such an experiment can
be found in [34].

A complete description of the particle’s state can be achieved by determining
its position and its internal state. For the description of the position we introduce
state vectors | P,), where n denotes the trap. Let us initially have the particle in an
internal state |R) and a position state | Py):

[%0) = | Po)|R) . (6.1)

The whole process of inverting the trapping field and applying an external field
which drags the particle to a new position can be encapsulated in a “shift” operator
S. It shifts the particle to the right if the internal state is |R), and to the left if the
internal state is |L):

S|Pu)IR) = [Peta)|R),  SIPy)IL) = | Pio)|L) . (6:2)

Our aim here is to simulate the quantum random walk among the traps. In the
classical version we would toss a coin, which would decide with probability of 1/2
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6.1 Determinism in Quantum Evolution

for one of the states |R) or | L) of the particle. In quantum mechanics, we can pre-
pare the state in a superposition of states, say, (|R) + |L))/+/2. This state has the
property of providing the outcome of |R) or |L) with the same (1/2) probability
as in the classical case. To be in the linear combination or coherent superposition
of the possible outcomes is something radically different from being with a cer-
tain probability in one or the other state. The quantum random walk demonstrates
this nicely. Tossing the coin will be realized in our quantum case by an operator
C which acts only in the Hilbert space of the internal states of the particle. We
prescribe the following operations:
1

CIR) = 7(|R> —|L)) (6.3)

N

and

! (IR) + L)) (6.4)
V2 ' '
The random walk can now be realized by successive application of C and § (see
Figure 6.1). Using (6.1), (6.3), and (6.4), we find that the first step in the random
walk will result in

C|L) =

po) S %u’o)um —1) S ) = %umm) SIPIL). (65)
The second step yields
$¢1y0) = ya) = SUPIIR) — P)IL) ~ [P)IR) ~ [P)ILY) . (66)

After the two steps we can measure the position of the particle. Quantum mechan-
ics prescribes that the probability p,, of finding the particle in the trap denoted by n
is given by the expectation value of the projection operator | P,) (P,

, SO

pn=<w|Pn)(Pn|1/))- (67)

We obtain the probabilities p_, = 1/4, po = 1/2, and p, = 1/4, that is, the same
probabilities as for the classical random walk after two tosses.

We have chosen prescriptions given by (6.3) and (6.4) in order to be able to define
an inverse operator C~1. Tt is clear that with the inverse shift operator §_1, that
is, with the opposite meaning of the internal states |R) and | L) with respect to the
shift, and with the operator C~, we can also realize a random walk. By continuing
the walk with the inverse operator (S C)~' = C~1$~1, we arrive at the initial state
after the next two tosses:

(SC)THS O Mya) = (SC)THSC)THS ENS C)lypo) = |ypo) - (6.8)

In this state the probability po = 1. This is in stark contrast with the classical case,
where the probabilities after the next two steps with inverted dragging are again
p—2 = 1/4, po = 1/2, and p, = 1/4 (see Figure 6.1c).
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Despite the fact that after each application of the operators C and S (or C~*
and S~!) we could verify that the probabilities of shifting to the right and left are
1/2, we found that the system is (with certainty) in trap 0 after four steps of the
quantum random walk. Thus, we can conclude that the quantum system did not
behave in a stochastic manner during the walk, and it was rather governed by the
deterministic wavefunction evolution.

6.2
Entanglement

To handle the quantum and classical random walks in a unified manner, that is,
by a single (quantum) theory, we have to introduce another important quantum
mechanical concept, the concept of entanglement. For the description of a two-
particle state, quantum mechanics prescribes a Hilbert space composed of the
Hilbert spaces of individual particles by direct product, Hi4, = H; ® H; (see the
description of the Heitler—-London approximation in Chapter 5). Practically, this
means that we can construct an orthonormal basis {|m;4,)} of the Hilbert space
H14, from the orthonormal bases {|nq)} and {|n,)} of the Hilbert spaces H; and
H,, respectively, as

[1142) = [10)[12) . [2142) = [11)]22),... , (6.9)

where we list all N; x N, states of the N;-dimensional Hilbert space H; and the
N,-dimensional Hilbert space H,. Because of the superposition principle, a state
constructed as a linear combination of any of the states, defined by (6.9), is also a
valid state. Let us take, for example, the linear combination

1
V2
This type of wavefunction is similar to the exciton wavefunction defined by (5.33).
The particles prepared in this state are found with equal probability of 1/2 in states
|1) and |3). However, if we decide to measure the state of particle 1 and find it in
state |1), we have to find the other particle in state |3) with certainty. This does
not seem to depend in any way on how far apart the particles have traveled, and it
constitutes one of the most surprising and nonintuitive consequences of quantum
mechanics. The phenomenon we describe here is usually termed entanglement and
it demonstrates the nonlocality of quantum mechanics. To be more precise, we will
say that two particles are entangled if their state vector cannot be factorized into a
product of their respective state vectors. Quantum mechanics is said to be nonlocal,
because under certain conditions the measurement of one part of the composite
system influences the other part of the same system in a way which cannot be
explained by any local interaction, that is, the transfer of information from one
part of the system to the other part is not limited by the speed of light.

Another consequence of the entanglement is that no wavefunction completely
describing one part of a composite system can in general be defined. We have to

[¥14+2) = —=(111)[32) + [31)]12)) . (6.10)
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6.3 Creating Entanglement by Interaction

use the total wavefunction, (6.10), and no simpler wavefunction assigned to, say,
just particle 1 can be found that would contain all the information necessary to
completely describe its state. This is not surprising, because its state clearly de-
pends on the state of the other particle. The way out of the problem to describe the
interacting subsystems is the concept of the density operator, which was introduced
in Chapter 5.

Entanglement is not some exotic property that has to be carefully prepared in the
laboratory and kept protected from interaction with the outside world as it might
seem from some modern experiment. Entanglement is created spontaneously
by interacting systems, and consequently the pair of particles described by state
|1142), (6.10), will entangle with all quantum systems with which it interacts.
The difficulty we meet when studying entanglement in the laboratory is to keep
it exclusive for the two particles we have under control. It is this exclusiveness of
entanglement that has to be protected.

6.3
Creating Entanglement by Interaction

Let us now demonstrate how entanglement can be created by the interaction of two
particles. Let us consider two particles a and b with internal states |1,) and |2,),
for n = a, b (see Figure 6.2). The particles move freely in space, prepared in states

1
N = (1, 24 11
|$9) ﬁ(|1>+| ) (6.11)
12.) 12,)
0o
o(t)- Hie= %
At 1) 1)

75 (L) +122) 75 (1) +12))

Figure 6.2 Formation of an entangled state the collision, which takes time At, their inter-
by an elastic collision. Two sources Sy and action is described by the Hamiltonian Hint
S, prepare two identical particles in superpo-  defined in (6.13) and depicted here.

sition states of their internal states. During
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and
1
Ng)

and they are approaching each other. When the particles meet, they interact for a
short interval of time At. Let us assume their interaction is defined as an elastic
collision, that is, when one particle is excited, it can transfer its energy to the other
one and vice versa, but no energy is lost in the collision. This can be described by
an interaction Hamiltonian (see Figure 6.2):

|99) = —=(11s) +12,)) , (6.12)

Hine = 6 (£)(11a)125) (2al (15| + 12)]15) {1l (25]) - (6.13)

The function 6 (t) is equal to zero except for in a short interval {ty, ty + At} (Where
to is the time of the collision), and 6 (t) = 6, for ¢t € {1y, to + At}. The Schrédinger
equation in this case reads

—w(t) = = (Hs + )l w (1) . (6.14

with the initial condition |1 (t)) = |$%)|¢9) and the particle Hamiltonian
Hs = €)|12)(La| + €2124) (20l + € 115) (15| + €125) (24 - (6.15)

Without loss of generality, we can set the energies of all states to zero, and therefore
disregard Hamiltonian Hg. The solution of (6.14) to first order reads

X to+At
1

Wi+ A0y = [yt — 5 [ dei@lwo) + .. (6.16

to

and if At is sufficiently short, we get

[(to + A ~ [ (t0)) = 3 At An(to) (), (617)

while higher orders in Hipy are also higher orders in At, which is small. The initial
state |1 (to)) is not entangled, because it can be factorized into parts belonging
to particles a and b, respectively. However, after the interaction the particles are
entangled,

[y (to + At)) &~ [9(k)) — iOOAt(HaHZb) +12:)118)) (6.18)
because the new wavefunction cannot be factorized anymore.

According to what we said above, we can conclude that almost all interactions of

a quantum system with other (neighboring) systems lead to entanglement and an

increased loss of the ability to assign a wavefunction to the individual components

of a composite system. Most of interactions that occur in nature have a continuous
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character. It might be extremely difficult to solve equations of motion in some par-
ticular cases, but it is often possible to guess how the final entangled state will look
like. Instead of presenting the whole time evolution, we will denote the transition
from the initial state to the final state by an arrow:

[Winitial) = |%fina1) - (6.19)

We can always describe the evolution of the total system on the combined Hilbert
spaces of the subsystems, that is, we can use the eigenvectors of subsystems cor-
responding to their Hamiltonians to represent the initial and final states. Since
the system evolves from an initially unentangled state |inial) = |¢%)[¢?) to an
entangled state, this transition can be expressed as follows:

|1/)initial) = ‘¢3>‘¢2> = (Z O(Z'k ) (Za |lb )
—>Za ka)lly) = |9 (to + At)) (6.20)

where |k,) and |I,) are the eigenvectors of separate (noninteracting) particles a
and b. Choosing to observe just subsystem a, we can also write equivalently

1) = (Satea ) ot~ o o). 621
k k

where |¢§7k =1 / n! h Z . akl ) is the state of system b relative to the state |k;)
of system a, and n! h Visa normahzatlon factor of the wavefunction |¢) b N, In (6.20)
and (6.21), the brackets stress separable parts of the wavefunctions. On the right-
hand side, we cannot separate the two systems from each other unless all vectors
|¢)(bk’a)) are the same.

6.4
Decoherence

Entanglement is a ubiquitous phenomenon in nature. It is created spontaneously
by interaction of quantum systems, and it cannot be undone in a simple way. In this
section we will discuss the most famous demonstration of quantum behavior, the
double-slit experiment, where entanglement plays a crucial role. This consideration
allows us to introduce the important concept of decoherence.

Let us assume that we have a source of identically prepared particles which move
toward a wall with two slits. Behind the slit there is a flat array of detectors (a CCD
chip or a photographic plate) which records the particle’s impact position after it
has passed through the double slit (see Figure 6.3). The particle is expected to pass
with equal probability through one or the other slit. We can test this by covering
first slit 1 and then slit 2, and measuring the number of particles that reach the
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Figure 6.3 Double-slit experiment and the dis-  slit experiment in a vacuum; (c) double-slit

tribution of the detection on the array of de- experiment with the environment; (d) double-
tectors behind the double slit under different slit arrangement converted into a set of two
conditions: (a) one slit covered; (b) double- detectors.

detector. It should always be half the number of particles that pass through when
both slits are open.

When slit 1 is open (see Figure 6.3a), no matter how the particles were prepared
in the source, those that appear behind the slit had to have passed through the
slit, and we label their state as |1). The slit acts as a filter of particles, allowing
only those in an expected state to pass through. The distribution of the landing
positions of the particle when only slit 1 is open will be denoted Py (x). When slit 2
is open, we similarly describe this state as |2). In this case the particles land with
probability distribution P,(x) at position x of the detector. The classical theory of
probability dictates that when both slits are open, the probability distribution is
simply P;(x) + P,(x) (see Chapter 3). Standard quantum mechanics states that
when both slits are open the probability distribution is not simply Py (x) + P(x).
The experimentally observed probability P;4,(x) shows an interference term, like
the one we would obtain from light passing through the double slit.

Quantum mechanics postulates that the state of each particle after passing
through the double slit is a superposition of states |1) and |2):

[Y142) = a1]1) + a2[2), (6.22)

where constants a; and a; are complex probability amplitudes for finding the par-
ticle in particular states. Normalization requires that |a|> = |a;|> = 1/2. In bra-
ket notation the probability distributions are the expectation values of operators
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|x) (x| projecting the state on the spatial coordinate x. For probability P;4,(x) we
have

Piya(x) = (Yital %) {x|¥1+2)

1
5 [P1(x) + Pa(x) + 2Re ((1]x)(x[2))] - (6.23)
The interference pattern seen experimentally (Figure 6.3b) is explained by the wave
properties of the quantum particles.

Let us now set up the experiment in such a way that particles can collide with par-
ticles of a gas on their way to the detector (see Figure 6.3c). The gas, which forms
an environment of our quantum system, is itself a quantum system described by
Hamiltonian Heyy, and the interaction of the particles with the gas molecules (en-
vironment) is defined by Hamiltonian Hips. The total Hamiltonian then reads

A = Hopw + Hs + Hie (6.24)

where Hs is responsible for the “flight” of the particle in the absence of the envi-
ronment. After passing though the slits, the particle can only be in two states |1)
and |2) (and their superpositions), so we can use the expression |1)(1]| + [2)(2| as a
definition of the unity operator in the Hilbert space of a particle. Let us choose the
particle-environment interaction as

Hine = E[1)(11 + 502)(2], &5 # 5. (6.25)

This form expresses the fact that the gas only performs detection of the particle’s
state which is conserved by the interaction. Additionally, the gas interacts different-
ly with a particle in state |1) and a particle in state |2). Note that if & = 5} = &),
the interaction Hamiltonian would have the form of a product of an environmen-
tal operator and the unity operator in the Hilbert space of the particle. Operator =
could then be added to the Hamiltonian of the environment, Heny, and the total
Hamiltonian, (6.24), would be the sum of two Hamiltonians. Consequently, the
wavefunction of the system and the environment would never entangle, the two
wavefunctions would never influence each other, and by definition there would be
no interaction between the particle and its environment. In other words, the en-
vironment would not be able to distinguish different states of the particle. Thus,
operators = and =) have to be different for any interaction to take place.
For convenience, we can now rewrite the interaction Hamiltonian as

A~

Hiny = 21 + AZ2)(2

, (6.26)

where AZ = E, — £}, and where we used the definition of unity on the Hilbert
space of the particle (1 = |1)(1| + |2)(2|). Taking into account such a definition
of the interaction Hamiltonian, we now define new environment and interaction
Hamiltonian operators:

I:I/

env

= I:Ienv + &1, (627)
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and

H Tt — 51 = AZ)2)(2] . (6.28)

int =

After this redefinition, the interaction Hamiltonian is zero if Z; and =, are the
same, that is, in the situation when there is no interaction, no entanglement be-
tween the particles and the environment.

The initial state of the system including the state of the environment, |7,), con-
tains evidently no entanglement:
[%o) = [¥142)[7M0) - (6.29)

From its initial state, the system propagates for a time ¢ until it reaches the detector.
At the detector the system will be in state |1 (t)) = U(t)|1o), where U(t) is the
evolution operator of the total Hamiltonian. Because all Hamiltonians are diagonal
in the basis of states |1) and |2) of the particle, we can write U(t) using just two
matrix elements Uy (t) = (1| U(t)|1) and Uy(t) = (2| U(#)|2). Consequently, using
the definition of |9143), (6.22), we get

[y (1)) = a1 U (8)|70) 1) + a2 Ua(t)70)12) = arln1)|1) + az|n2)]2) . (6.30)

Both Uy (t) and U, (t) are operators in the environmental Hilbert space and their
action on the initial state vector of the environment |7¢) can be expressed as

5 i
Ul(t)|770) = exp (_gHenvt) |770) = |771) ’ (631)
000 = exp (3 (Al + A2 In0h = 1) (632)

The probability distribution for finding the particle with coordinate x now also
includes the overlap of the environmental wavefunction:

P(x)

(WOl (1)
2 [P + Pafe) + 2Re (1) (x12) 0l 2))] (6:33)

Thus, the interference term is influenced only by the presence of the interaction
with the environment.

The term that changes the interference pattern due to the presence of the gas
reads

(m11m2) = (10l OF (1) U8 10) - (6.34)

To express the operator Uf(t) U, (t) in a suitable form, we will use (6.31) and (6.32).
First, we find that we can derive a simple differential equation by taking a time
derivative of U, (t) Uy(t)

5 (Ul’ (t) Uz(t)) - —% Uf Az Oyt (Ul’ (1) Uz(t)) . (6.35)
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Equation (6.35) has a formal solution in terms of a time-ordered exponential
(see (4.41) for the definition):

U, (t) Uz(t) = exp —%fdzﬁj‘(r)AE Ui(z) | , (6.36)
0

where we assumed U;(0) = U,(0) = 1. The desired overlap is therefore just a
matrix element of a certain time-ordered exponential and it can be approximately
evaluated for some models of the environment. Details on an approximate evalu-
ation of (6.34) are presented in Appendix A.8. Here it is enough to know that the
particle-environment interaction can often be described by some two-point corre-
lation function C(t). If the interaction can be regarded as stochastic, we can try
to model it using some simple assumptions about the corresponding stochastic
process. The overlap, (6.34), then decays exponentially

(milm2) = =0, (6.37)
where &(t) is proportional to the double integral of the correlation function
C(t) (A109).

For instance, when consecutive interactions between the particle and its environ-
ment are not correlated at all,

C(t) ~ (1), (6.38)
and (A109) yields

E()~t. (6.39)
If the correlation itself decays as an exponential function, for example,

Cty~e T, (6.40)
we get

E(t) ~ l(e—“ —Tt+1)~ Lo (6.41)

r 2

Thus, the overlap (#1|n;) decays with time t according to the two model cases

described above as

2
24

(milma) =e77", (nilnz) = e (6:42)

Constants y and A4 are related to the strength of the interaction of the particle with
its environment because they are proportional to the square of the interaction term
(see Appendix A.8):

y ~ A2 ~ (| AEAE|,) . (6.43)
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It is possible to show that & (¢) is always a growing function at long times (t > 7)
for the case of an arbitrary correlation function which decays to zero at a certain
correlation time 7. We can thus conclude that the overlap (71|#n,) decays for the
chaotic gas and the interference term therefore disappears in the course of time.

As follows from the analysis presented above, the state of the particle in the pres-
ence of the gas becomes entangled with the gas and thus cannot be given in the
form of a wavefunction associated only with the particles. However, the correspond-
ing reduced density matrix of particles can be given as follows:

1 —£()
p(t) = treadlv (Y (O} = 5 (e_g*m ¢ 1 ) : (6.44)

While at t = 0 this reduced density matrix represents a pure state, at long times
t > 1/y it represents a statistical mixture of the system in states |1) and |2):

1 1
o (t > ?) = 5 ((1) (1)) . (6.45)

Thus, we have arrived at a diagonal density matrix, so the particle never seems
to be in a state represented by a superposition of states |1) and |2). This is true,
however, only after the averaging over the states of the environment, that is, after
disregarding a part of the entangled composite system.

In our description, the diagonal form of the density matrix does not mean that
we have an ensemble of particles found in state |1) and particles found in state
|2). However, in the measurement, the system will behave as such, because the
interference is not present. The effect that we have identified here is usually called
decoherence, and the approach in which we take seriously the superposition princi-
ple and the rapidly spreading entanglement between interacting quantum systems
is termed decoherence theory.

6.5
Preferred States

Similar to the transition from the pure to the mixed state described in Chapter 4,
the decoherence approach does not require any notion of the collapse of the wave-
function. Sticking to simple principles, one can explain many phenomena in a
unified and elegant manner without invoking the collapse at all. This idea will be
discussed later.

In terms of decoherence theory we can answer the question why only a small
subset of states are in principle allowed by the superposition principle. Indeed,
some states destructively interfere due to the superposition and their signatures
decay, while other states are stable with respect to the decoherence. Apparently,
some states are selected by the decoherence process over other states.

By describing the double-slit experiment, we have shown that the corresponding
reduced density operator becomes diagonal (in some basis) due to the interaction
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of the system with its environment. Thus, some basis of states was selected from
all possible basis by the decoherence process. These selected states are therefore
called the preferred states and they compose the preferred basis, and the process in
which this basis is selected (by the environment or the measuring apparatus) is
called environment-induced superselection [35]. In the absence of the environment,
the superposition principle lets us describe the quantum system in an arbitrary
basis, and all superpositions of states are equivalent. Decoherence changes this
freedom.

The selection of the preferred basis is, however, not so straightforward as the
example in Section 6.4 might suggest. [t seems that the loss of coherence as defined
by (6.44) leads directly to states |1) and |2) as the preferred states. However, the
final density matrix, (6.45), looks exactly the same in all bases. What is even worse
is that the complete state vector, (6.30), apparently does not help us to distinguish
the preferred basis either. We can, for instance, introduce new basis states |a) and

|3) so that

1) = (all)|a) + (BIVIB),  12) = (a|2)[a) + (BI2)IB) . (6:40)

The time evolution will have the form

(1) + (200} — % (1)) + (BILIB) + 12)m)

+({al2)la) = (B12)|B)|n2)] - (6:47)

S

The right-hand side can be rewritten as

(I ma) + 1) mp)) (6.48)

SE

2

where

1na) = (alV)m) +(al2)ln2) . |np) = (BINn) + (B12)n2) . (6.49)

States |7,) and |77) are bath states and they are orthogonal. Not surprisingly, they
prevent any coherence between states |a) and |f) from surviving.

We have to step back to the whole notion of the system—environment interaction
again. We have stated that the interaction between the system and the environment
is possible only when the environment can distinguish between different states of
the system. We have postulated that operators = and =, are different. If they are
not, there would be no interaction between the particles and the environment in the
sense that it would not be possible to distinguish from the state of the environment
whether the particle is in state |1) or state |2). Therefore, we can conclude that in
our case states |1) and |2) can be distinguished; the particles encode their state (or
the information about their state) in the environment: the environment acts as a
detector.

We can show by an extreme example that not all states are distinguishable from
the point of view of the environmental states. Let us include an observable, which
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measures the bath state, in the whole system under consideration. The observable
should assign different eigenvalues &, to different states of the bath |£,). The cor-
responding operator reads

E=>"&&n)(Enl . (6.50)

Let us measure this observable for the final environmental states corresponding to
the following linear combinations of the particle states:

_ L b
V2 V2

The corresponding bath states read, according to (6.49), |74+) = (|71) + |172))/\/§,
and |7-) = (I71) — |172))/~/2. It is easy to verify that we get

HEnlm) + (12| En) (Enln2)
> :

[+) (0 +12). =) (11)—12)) . (6:51)

(HEI+) = (- El-) = Y&, Ul 652)

This result does not depend on the way in which we measured the information
contained in the two bath states; the results are the same for all conditions. This
suggests that the environment cannot distinguish states |+) and |—) from each
other, and consequently it would not be able to destroy coherence of their linear
combinations of this specific type. For instance, the linear combination (|+) +
|-))/~/2 should not dephase at all. This is easy to see, because (|+) + |-))/~/2 =
|1), and starting with this state, we get

[1)70) — [1)|m1) . (6.53)

Thus, this time evolution does not lead to any entanglement.

It is important to note here that we had to look at the environment to be able to
distinguish the preferred basis in the Hilbert space of the particle. This basis is de-
termined by the environment and its interaction with the particles. We have dealt
with a particularly simple system—environment interaction Hamiltonian, which
was diagonal in the basis built from the eigenstate of the system Hamiltonian.

The role of the environment can often be played by a macroscopic measuring
device. The nonoverlapping scalar product of the environment states is the condi-
tion for the superselection of the system states. Because the construction of detec-
tors is in our hands, and with it, at least to some extent, also the properties of the
corresponding interaction Hamiltonian, one can construct detectors detecting the
system in different states. A simple example is presented in Figure 6.3d, where by
adding a wall creating separated chambers we have made sure that the time evolu-
tion of the environment, in this case the particles of the chamber walls, will enable
us to distinguish whether the particle has passed through one or the other hole.
Were the wall not present, the final state of the environment would not allow us to
determine the hole through which the particle passed.
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6.6
Decoherence in Quantum Random Walk

The concept of decoherence helps us to reconcile the deterministic evolution of the
wavefunction and the superposition principle, on the one hand, with the classical
prediction of the random walk, on the other hand. What we have so far complete-
ly ignored is the fact that the particle in a trap interacts with some environment,
which is sensitive to its position on the grid. At least, the particle has to relax to
the bottom of the new potential well after the field has been inverted. Thus, the
fluctuations of the environment to which the particle is exposed in different traps
will be different, or (expressed from the opposite point of view) the particle inter-
acts with the bath differently when in different traps. Because the environment
causes neither the transitions of the particle between the traps nor the transitions
between internal states of the particle, it must be the environment which is driven
in a different way by the presence of the particle in one or the other trap. Again,
information about the particle gets encoded in the environment by this interac-
tion. This is exactly the situation found in the double-slit experiment described in
Section 6.4.

The state of the environment for a particle prepared in the same initial state
(including the environment) but traveling through different positions on the grid
will be different. We will denote the initial state of the particle—environment system
by a state vector

o) = [P)[R)[0) , (6.54)

where |0) describes the environment evolving with the particle occupying trap 0.
Let us assume the particle was transferred to position —1, and then back to 0 af-
ter time At. We denote the state of the environment as |0, —14,, 0), reflecting this
movement. If the particle were instead moved to position +1, the state of its envi-
ronment would be |0, +14¢, 0). As any state vectors, also those of the environment
have to be normalized to 1, so

(0, —1A:,0

0, —1a¢, 0) = <0: +1a:,0

0,415,,0) =1. (6.55)

The state vectors for different bath histories might not overlap perfectly, that is,
(0, +14,0[0,—14;,0) < 1. Because the bath is assumed to consist of a large num-
ber of degrees of freedom, the overlap of different histories can be assumed to
decay in the same way as described in Section 6.4. This happens for the intervals
when the bra and ket baths evolve under the influence of the particles in different
traps. If the history differs in the particle position for time ¢, the overlap will decay
by the factor e77*, where y is the decoherence rate introduced in Section 6.4. We
will therefore have

(0,4144,0[0, =14;,0) = e VA1, (6.56)

This simple model of decoherence will enable us to treat the transition from
the coherent to the incoherent (quantum to classical) random walk in a consis-
tent manner. We will rewrite (6.5) and (6.6) so that they also include a consistent
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description of the environment. Equation (6.5) becomes

o) S %|P0)|0)(|R) .
3 %um 0,1)[R) — [P_1)|0, ~1)|L)) = 1) (6.57)

where we dropped the subindex At, and assumed that each step of the walk took
time At. The second step yields

>

A A ¢ 1
§Clpa) = S(1P2)10,1,2)[R) = | Po}[0,1,0)] L)

— | Po}|0,—1,0)|R) — [P—3)|0, =1, =2)[L)) = |y2) . (6.58)

We can check that nothing changed in the probabilities of finding the particle at
position n after two steps. Using the condition defined by (6.55), we obtain p_, =
1/4, po = 1/2, pp = 1/4.

Since the operator C ™S~ acts only on the particle and not on the environment,
its action does not lead to a complete inversion of the dynamics. We see that the
bath still keeps the memory of the previous evolution. The next step in the random
walk is therefore

A 1
$7w2) = 5(1P010.1,2,1)[R) = [ P1)[0,1,0,1)]1)

— [P-1)|0,=1,0,~1)|R) = |P-1}|0,~L,—2,~1)| L)) = [y3)
(6.59)
and
3
STICys) = [y) = (%) (IP0)10,1,2,1,0)|R) + | P;)]0,1,2,1,2)|L)

+ | Po)[0,1,0,1,0)|R) — | P;)|0,1,0,1,2)|L)

—|P-2)[0,—1,0,—1,-2)|R) — | Po)|0,—-1,0,—1,0)| L)

+ |P_;)|0,—1,—2,—1,=2)|R) — | Py)|0, —1,—2,—1,0)| L)) .
(6.60)

Now the evaluation of the probabilities of finding the particle at position n also
includes the overlaps of the environmental wavefunctions. The probabilities read

1
p2=5((0,1,2,1,2] - (0,1,0,1,2))(10,1,2,1,2) ~10,1,0,1,2))
1 1
= 4(1-(0,1,0,1,20,1,2,1,2)) = . (1 — AN (6.61)

1 1
p2= (1= (0,-1,0,-1,-2/0,-1,-2,~1,-2)) = L (1 - A  (6.62)
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6.7 Quantum Mechanical Measurement
and

(1+e 74 . (6.63)

N =

Po =

We can distinguish two important limits: The limit of the very fast or strong deco-
herence is when y > At™1, and the limit of weak decoherence is when y « At™!.
In the former case the probabilities converge to those of the incoherent classical
random walk. In the weak decoherence regime, all probabilities tend to be zero
except for the trap where the particle started.

We have thus demonstrated how we can describe the quantum and classical ran-
dom walk within one (quantum mechanical) description. We will now discuss in
two steps the origin of (6.7) for the probability.

6.7
Quantum Mechanical Measurement

In the previous sections we assumed that we know how to measure the properties
of quantum mechanical systems. We have taken it for granted that there are macro-
scopic measurement devices that will yield a definite result for every measurement.
The usual assumption is that when quantity a, to which we can assign an operator
A, is measured, each of its measurements yields one of its eigenvalues a;, and the
system is found in eigenstate |a;) of operator A after this measurement. The prob-
ability of obtaining the value a; is given by the scalar product of the system state
|) and the corresponding eigenvector as

pi = ailp)l*. (6.64)

This is referred to as the Born rule. Since the system is found in state |a;) after
the measurement, this process could be naturally attributed to the collapse of the
wavefunction |¢) — |a;). The discussion of the meaning of this apparent collapse
and how it happens is continuing today. Decoherence theory cannot explain the
apparent collapse, but it can clarify some of the statements above.

First, let us think about what the measurement actually means. We will consider
a nondestructive type of measurement discussed first by von Neumann. He was
the first to consistently discuss the measuring apparatus as a part of the quantum
mechanical problem. He suggested that during the measurement the state of the
apparatus evolves together with the state of the system. If the system is in some
state |s;) measurable by the apparatus (e.g., it is a certain position state for a detec-
tor being able to measure the position), then the apparatus evolves from its initial
“ready” state |d,) to state |d;) corresponding to the measured value of the physical
quantity:

si)lde) — Isi)ldi) . (6.65)
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An ideal detector would not distort the state of the system, and thus due to linearity
of the time evolution, we should have

lp) = cilsi)ld) > D cilsi)di) - (6.66)

i

In other words, the apparatus entangles with the quantum system.

Let us now construct the detectors in such a way that the measurement can
be performed in a chosen basis. This choice is sometimes simple to achieve (we
can, e.g., choose to measure a spin along any axis); on other occasions it might
be more difficult to achieve experimentally. One should not forget that the envi-
ronment might also play the role of the preferred basis selector, and certain types
of states (such as linear combinations of very distant position states of massive
objects) might be destroyed before even reaching our detectors. An idealized mea-
surement process can be analyzed and formalized with the help of filters. Let us put
a filter between our apparatus and an approaching quantum system. The filter does
not allow the specific system states to reach our detector unless they are in a certain
desired state (see the discussion of the double-slit experiment in Section 6.4). This
selection can be easily represented formally by a projection operator:

fi = lai)(ail . (6.67)

This operator sorts out all states and prepares state |a;) (up to a complex prefactor)
out of them:

filw) = (aily)lai) . (6.68)

An example of such a filter is a monochromator, which selects a given frequency of
the spectrum of light. A slit in the double-slit experiment is also a good example of
a filter.

One nice thing about filters is that if we set a detector behind them and if the
detector registers the presence of a particle, we can claim that we have measured
the particle in a particular state filtered out with the filter, that is, with a particular
value a;. The filter formalism nicely reflects the only type of access we have to
quantum mechanical entities, namely, access through the readings of detectors.

We may now describe the state of the particle |a;) after it has passed through
filter f;, and assign the quantity measured by filter f; by the operator

Ai=aifi = ailai)(ail . (6.69)

The measured value can then be obtained as a regular expectation value of state
lai):

a; = (a;|Aila;) . (6.70)

This is all by construction, and the only requirement is that states |a;) are normal-
ized.
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6.7 Quantum Mechanical Measurement

The filter and the detector that we have constructed so far are very simple. The
detector can only point out that the system was found in state |a;) or not found at
all. If it happens to be in some state that is orthogonal to |a;), we have no informa-
tion about it. However, nothing can prevent us from constructing (at least virtually)
other filters that account for other states of the particle, just as a CCD chip is used
as an array of detectors in a spectrometer. If we completely cover the “spectrum” of
the quantity we measure, we expect with certainty that one of our detectors fires if
a particle was present in our instrument. If two detectors fired due to one particle,
the detector would be useless for determining the state of the particle.

A proper detector can be constructed by requiring that it interacts with particles
in different states in a sufficiently different manner so that such interaction brings
the detectors into orthogonal internal states. We can remind ourselves of the situ-
ation in Section 6.4 where we created a detector which can distinguish the path of
the particles by dividing the space behind the slits into isolated compartments.

Now that we have many filters, we can add them together into one large filter:

F=Yfi=>"la)ai. (6.71)

If all possible states are covered, the presence of the complete filter should not actu-
ally matter at all to the state of the particle. The particle will pass through the filter
untouched, because all of its possible states are allowed to pass through, which
means that f , (6.71), represents the unity operator. To make a measuring device
out of this filter, we have to equip each individual filter |a;)(a;| with a detector. The
array of detectors will be denoted by the state |dy, dy, ..., dy), where |d,) is the
state of the nth detector. The detector has at least two states |0,,) (nothing detected)
and |1,) (particle detected) which are orthogonal, that is, (0,|1,,) = 0. The initial
state of the combined system of the particle and the detectors reads

[%) = [90)[01,...,0n) . (6.72)

After the particle has passed through the filter, it finds itself in state

|Wo) = > (ailwo)|ai)|0r, ..., 0n) , (6.73)

1

which is the same state (the filter does not change the state of the system) as be-
fore it passed through. Now the particle interacts with the detectors whose internal
states will change according to the state of the particle:

|Wa) =) (ailpo)ai)]0r,..., 1i,...,0n) . (6.74)

1

Apparently, the particle has entangled with the array of detectors, and cannot now
be assigned a state without reference to the state of the detectors. If we discarded
the information from the detectors (which we have not looked at yet), we could at
best assign a reduced density matrix to the particle. This reduced density matrix
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would be diagonal in the basis of states |a;), and it would therefore represent a
statistical mixture. It is not surprising that we will find the particle in one of the
states |a;) and not in a superposition, because that is exactly what the reduced
density matrix, corresponding to (6.74), would tell us.

The last step in the chain of processes is the observer, who comes to register the
state of the detectors. We have to take into account the interaction of the observer
with the detectors, and by analogy with previous cases, we expect that the observer
has to interact with them in such a way that his/her internal states corresponding
to observing different detector outcomes are orthogonal, so that he/she is able to
distinguish the states of the detectors.

Let us denote the state of the observer who registers the firing of the ith detector
as | M;). Now the complete state vector reads

|Wato) = Y (ailtpo)|ai)[0n,..., 1is..., 0n) M), (6.75)

1

and it contains the observer who registers all the different states of the detectors.
Now imagine you are the observer, and you have just seen a certain detector go off,
say, the one with index k. You are certain that the particle has been detected with the
value of the quantity A equal to ;. You can hardly register yourself in a different
state of the mind (in |M;) where j # k) simultaneously, that is, you cannot see
the other outcomes of the experiment. One thing that we know for certain is that
our mind does not enable detection of such superposition states. We postpone to
Section 6.9 the question of what happened to the other states of the mind and
why you ended up registering the kth detector. Already we can now reveal that no
definite answer exists to these questions. For now let us note that for the observer
subjectively, the state of the system plus the detector reads

[¥Ym) = |ai)l01, ..., 1k, ..., On) (6.76)

We normalized the state formally because all other branches of the wavefunction are
effectively locked away from us by decoherence, and all the probabilities registered
by the observer will be relative to his/her branch.

The above analysis explains why we get the system in a single state out of the
whole superposition. The process of detection entangles the measuring instrument
and the observer with the state of the particle. Both the detector and the observer
are “constructed” in such a way as to distinguish between some states by means
of decoherence. We as observers rely on the device to be a broker between us and
the quantum systems. When it comes to the question of which of the outcomes an
observer will see, to the best of our knowledge, particular results appear to occur
randomly. In order to predict quantum mechanical averages of the measured quan-
tities (which we know from comparison with experiments that we can) we would
need to know at least the frequency v; = limy—oc N;/N of these occurrences.
Here N; is the number of occurrences out of N measurements that the ith detec-
tor goes off. Then the expected average value of the measured quantity would be
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given by
(A)=> avi. (6.77)

Interestingly, the frequency v; can be calculated without resorting to any new pos-
tulates about quantum mechanics.

6.8
Born Rule

In previous sections we calculated the probability of finding the system at a certain
trap in the quantum random walk experiment. Now we will try to do it based on
our discussion of measurement. As before, the central idea is that if a quantum
system is in state |a;) which corresponds to a filter fi = |a;){a;|, it passes through
this filter with certainty.

The measurable quantity a can be assigned an operator constructed from all
possible filters fi, and to each filter we assign the corresponding value a; of the
quantity a:

A=Y aifi. (6.78)

Every time we find the system in eigenstate |a;), we can obtain the corresponding
value as

a; = (a;|Ala;) . (6.79)

The rule for calculating the expected value of the quantity a from its operator A
works only for the eigenstates of the operator A. It would work for an arbitrary
state vector |y) if we could show that

(WIAlp) = ail(yla)’ (6.80)

1

coincides with (6.77), that is, if we could show that the frequency v; of the occur-
rence of the value a; is [{(y|a;)|%.

Let us assume a related measurement of the quantity a on many systems that are
prepared in identical states |1). It will be more convenient to consider the whole
ensemble of N such systems described by a total wavefunction:

[P = 9hlp)a... |9y - (6.81)

The subscript indices number the systems in the ensemble, all of which are in
state |1). We will now construct an operator }'}N) which would give us the fre-
quency v(iN) of the occurrence of state |a;) among the states constructed out of the

eigenstates |a;) of an ensemble of N identical systems. For instance, for state

[a1)1]as)2]ao0)3 (6.82)
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we want the operator }A'S(S) to return to 1/3]a1)1]as)2|a99)3 so that we will find v(53) =
1/3. In general form, the operator reads

FO= 3 o)) n(aey Iy - (- (6.83)
k1,k2,. kN

The eigenvalue v(iN) of the operator reads

1
(N) 2 :
v, = N 6iku . (684)

a=1

This operator represents the quantity corresponding to the frequency of the occur-
rence of state |a;) in the ensemble of N systems. We know what the eigenstates
of this operator look like, because we have constructed it from them. For all these
eigenstates [s)

]:i(N)|S> — V(iN)|S) (6.85)

holds.

From the above we know that the rule, (6.80), for calculating the expected values
works for the eigenstate of the “measured” operator. Interestingly, we can verify
that if we increase the number N to infinity, any state |¥) = limy—oo |¥™)
constructed out of N copies of an arbitrary state |1) is an eigenstate of the corre-
sponding frequency operator F; = limy_ oo F| i(N). By analogy with filters, all vec-
tors pass through the filters corresponding to the operator ;, and for all of them
we will with certainty measure one of the eigenvalues. Moreover, we can show that
this eigenvalue is | (¥ ]a;)|? as was suggested by (6.80). The derivation of this result
is presented in Appendix A.6. We can therefore conclude that the frequency of the
occurrence of state |a;) in state |¥) is

vi = [(yla;)|*, (6.86)
which is the Born rule. This confirms at the same time that
(A) = (w|Alp) . (6.87)

We have thus calculated the statistical probability that we obtain a certain eigenval-
ue from a single measurement of quantity a.

6.9
Everett or Relative State Interpretation of Quantum Mechanics

The previous discussion of quantum mechanics proposed solutions to most of the
problems with the transition from the quantum to the classical world. The problem
that remains is to find some way to decide which of the possible outcomes, that is,
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6.9 Everett or Relative State Interpretation of Quantum Mechanics

the eigenvalues of the preferred states, will be measured. Unfortunately, decoher-
ence theory has no answer to this question. To the best of our knowledge, there
is no theory supported by experiment which would be able to provide a definite
answer.

We will discuss one direction in the interpretation of quantum mechanics consis-
tently. This interpretation is connected with the name of Hugh Everett [36]. Everett
realized that the mechanism of entanglement as we discussed above in (6.75) can
also apply to the observer, and he suggested that this content of information is
sufficient, and nothing more is needed, to describe the world in which we live con-
sistently. Indeed, if the whole universe is assigned by the wavefunction |¥'), and
if the possible states | M;) corresponding to the observer form a complete set, this
total state vector can be written in a form of a sum over the states that are relative
to the state of the observer:

W) = pilMi)|Us) . (6.88)

Here the state vectors | U;) describe the rest of the universe, which is not reached
by the observer. We can leave it to philosophers and future generations of physi-
cists to decide how deep in us or in our brains the observer state |M;) resides.
The most important observation here is that the observer (as we have discussed
already) can find himself subjectively only in one of the states |M;). The observer
then perceives only one of the many possible states of the universe, namely, the
one which corresponds to the subjective branch. Because the observer perceives
himself as classical, and as such stands outside the quantum wavefunction, he can
assign the rest of the universe to the wavefunction |U;), which is normalized to
1. This wavefunction is obviously relative, even “subjective,” to the observer, but
the observer (as far as we know today) has no influence on the choice of the possi-
ble “Everett branch” of the wavefunction, (6.88), he will find himself in. Individual
branches of the total wavefunction cannot communicate with each other because
of decoherence, and the observer is not aware of the probability |p;|?> with which
he has arrived in his particular branch.

As observers, we can construct detectors so that we can classically observe only
certain outcomes, in other words, devices such that our state |M;) is determined
by a given state of the detector | D;) (which is only a part of the state vector of the
whole branch). We can predict the probability that we will end up with a particu-
lar outcome of the measurement using the Born rule, but of course, we still have
no way to determine beforehand which outcome will be realized in our particular
measurement. [t is important to note that other branches of the total wavefunction
effectively cease to exist for the observer, and the relative state interpretation is thus
equivalent to the interpretations that assume some “collapse of the wavefunction”
during the measurement process. It so far remains a matter of taste whether leav-
ing the unobservable branches of the wavefunction to live their own lives is a more
gruesome offense to Occam’s razor than the supposed existence of an unobservable
mechanism which deletes them. From the point of view of quantum theory, whose
basic tenets, including the superposition principle and nonlocality, seem today to
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Figure 6.4 Hierarchy of environments of a of freedom of the environment determined by
relevant quantum system (state vector [¢)). the observer are described by |envc), and the
The immediate quantum environment is de- classical state corresponding to the observer

scribed by the state vector |envg), the degrees  is described by the state vector |M;).

be extremely well tested, it is the “collapse” of the wavefunction which might seem
to be an unjustified extension of the theory into the realm of the unobservable. As
we have already pointed out however, the objective collapse of the wavefunction
cannot be excluded, and the mechanism of the wavefunction branching or collaps-
ing is not known. We do not know what determines the branch of the wavefunction
we live in, or how this determination is done.

6.10
Consequences of Decoherence for Transfer and Relaxation Phenomena

Let us now discuss the consequences of the picture that we have just created about
the quantum to classical transition for our understanding of energy transfer and
relaxation phenomena in molecular aggregates and small molecules. It is an un-
deniable fact that observers behave in the most profound sense as classical objects
and they can find themselves only in classical states. If the state vector |¥') of the
universe delimited in Figure 6.4 by the outer full line is given, then in the branch
| M;)| U;), relative to a particular observer in state | M;), there are also other classical
degrees of freedom distinct from the observer. All macroscopic degrees of freedom
that we know and observe are classical. On the other hand, we have at least some
evidence that at the microscopic level systems behave quantum mechanically, un-
less we entangle them with some macroscopic device to determine their state. The
situation is depicted in Figure 6.4, and it can be formalized as follows.

Let us start with the observer in a certain state | M), and a microscopic quantum
system in state |¢) = «a|1) + ]2). A large number of degrees of freedom corre-
spond to the observer and to the environment of the quantum system: |env) =
[9i)...|¥N). We assume an initially nonentangled state, which could be a result
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6.10 Consequences of Decoherence for Transfer and Relaxation Phenomena

of some careful preparation, in which states of all degrees of freedom of the envi-
ronment were determined, and the quantum mechanical system prepared in state
|¢). From now on, let us switch on the interaction among all parts of the system.
To discuss this interaction we will take the liberty to describe the time evolution in
a sequential fashion, bearing in mind, however, that all processes occur simultane-
ously.

Let us first discuss the interaction of the observer with his environment. The
observer interacts strongly with some degrees of freedom of the environment and
these degrees of freedom become entangled with the possible Everett branches.
The observer follows a single branch | M;) out of many branches, which determines
the state of some degrees of freedom that are observed as classical. This step of the
interaction is described as

IM)[p1) ... [YN) @) — [Mi)lenve) 1) ... [¥n)I @), (6.89)

where the first k degrees of freedom of the environment were determined by the
observer in their state |envc) = |¥1)...|y). At the same time, however, the de-
grees of freedom undetermined by the interaction with the observer interact and
entangle with the quantum mechanical system, so

| M;)lenve) |k+1) .. [¥n) @)
— |M)lenvc) (a ‘envg)> 1) + B ‘envg)) |z)) . (6.90)

The state of the quantum subsystem can be assigned the wavefunction |yq) =
alenvg))|1) + |envg)) |2) relative to the observer and the classical environment.
However, the relevant system cannot be assigned a wavefunction. There exist no
wavefunctions |¢,) that would describe the relevant system without having to refer
to the state of its quantum environment. We can write a density operator for the
whole quantum part,

Wo = [9q)(¥al » (6.91)

and this density operator can be reduced to provide a density operator for the rele-
vant system p; = tren,{ Wo}:

pr = |aP[1)(1] + |B*12)(2]
+af™* <envg)‘ envg)> 02|+ a*p (envg)‘ envg)> [2)(1] . (6.92)

Because the scalar products (env8)|envg)) < 1, the relevant system is, in general,
in a mixed state. It is important to note that this mixed state can still be partially
coherent depending on the evolution of its quantum environment.

When the observer decides to measure the relevant state, a direct strong interac-
tion link to it has to be established so that different states of the relevant system
entangle with different branches of the observer. This can be done by appropriately
constructing the detector.
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The observer could also attempt to measure the degrees of freedom of the quan-
tum environment by some detector corresponding to a set of filters,

1=> &), (6.93)
k

as described in Section 6.5. The measurement would result in choosing one of
the possible outcome states |E;) of the environment, and the state of the universe
would then read

| M;)|envc)|Er) (a <€k’ envg)> 1) + ﬁ(é’k’ envg)> |2)) . (6.94)

Thus, the state of the sole undetermined part of the whole system is a pure state.
It can correspond to a superposition of states |1) and |2) even if the overlap
(env8)|envg)) = 0, because the states of the quantum environment can still have
nonzero overlap with |£;) both at the same time. If the state of the environment
is fully determined, the border between the classical and quantum degrees of
freedom is shifted all the way to the microscopic quantum system. The quantum
system will then act as if it was subject to a classical stochastic environment.

We do not know where exactly to put the cut between the classical and the quan-
tum description in real systems. The only question is whether the cut is some-
where close to the relevant system so that we would be justified in using a classical
stochastic description for its environment, and a wavefunction description for the
relevant system, or whether there is only a substantially large environment which
requires a quantum description. This question is not easy to answer; molecular
aggregates, which were introduced in Section 5.4, are often constructed by nature
from a surrounding (protein) scaffold and selected chromophores. We know that
for many functions of proteins, a classical molecular dynamics description is suf-
ficient. Does this mean that we can indeed describe the energy transfer and relax-
ation phenomena in a semiclassical way where the electronic degrees of freedom
are quantum and protein and intramolecular vibrations are classical?

In general, the answer is no. It will be demonstrated in Chapter 14 that disre-
garding the entanglement between the environment and the electronic degrees of
freedom leads to a clear deviation from the quantum mechanical description al-
ready at the level of simple optical absorption experiments. The resulting effects
are in principle observable and could be experimentally verified. More importantly,
we will discuss in Chapter 8 that the quantum nature of the environment is inti-
mately linked with the detailed balance condition which has to be satisfied for tran-
sitions between quantum mechanical levels. Classical environmental fluctuations
are not able to drive a quantum system into canonical equilibrium, and the quan-
tum and classical relaxations meet only at the infinite-temperature limit. This is a
problem which limits seriously the application of classical stochastic approaches
to the simulation of a thermodynamic bath, and it will be discussed in Chapter 7.
The fact that real-world molecular systems follow thermodynamic relaxation and
the detailed balance quite well lets us conclude that the border between classical
and quantum degrees of freedom is enough to include a thermodynamically sig-
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6.10 Consequences of Decoherence for Transfer and Relaxation Phenomena

nificant number of degrees of freedom in the quantum part. The optical transitions
of molecules are therefore embedded in a quantum thermodynamic bath.

This leads us to several important conclusions. First, both the relevant systems
and the bath have to be described quantum mechanically. All other approaches are ap-
proximations, and they have to be carefully checked for unwanted consequences.
Second, electronic degrees of freedom of molecules embedded in a quantum bath can-
not be assigned by a wavefunction. They have to be described by a density operator.
Third, this density operator, however, cannot be interpreted statistically as a sum over
individual molecules,

1 N
p= 2 Wl (6.95)

n=1

where individual molecules would be assigned by a state vector |1,,) (this is due to
the second conclusion). There are a few more conclusions that are consequences
of the three conclusions discussed here, and we will mention them in Chapter 8.

Decoherence in quantum mechanics is a powerful instrument for qualitative dis-
cussion of the delicate issues of interaction between microscopic and macroscopic
systems. However, in this chapter we have rarely used the Schrédinger equation to
calculate some quantitative results, and when discussing the consequences of deco-
herence, we often resorted to the density operator. This is a consequence of the fact
that the density operator technique is extremely convenient for representing the
state of a quantum system embedded in an environment. It provides much more
advanced tools for studying the dynamics of microsystems coupled to a possibly
macroscopic bath.
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7
Statistical Physics

The concepts of statistical physics are necessary to properly describe naturally ob-
served phenomena of relaxation toward equilibrium. This topic is extensively de-
scribed in various textbooks. For theoretical concepts the reader is referred to [37,
38], while the book of Cengel [39] covers application aspects of thermodynamics. It
is worthwhile mentioning that the processes described by both classical and quan-
tum mechanics are reversible. It was explained in Chapter 6 how the transition
of the quantum system behavior into classical stochastic dynamics evolves and for
that the “observer” as a part of the environment has to be taken into account. The
realistic irreversible dynamics is thus intimately related to the concept of the en-
vironment. As the environment is macroscopic, it can be described using statisti-
cal arguments for an infinite number of particles. Thermodynamics and statistical
physics describe such types of systems.

Thermodynamics is a purely phenomenological theory based on a few laws. A
more theoretical background for thermodynamics is given by statistical physics. It
forms the microscopic foundation of thermodynamics; however, statistical physics
itself is based on a postulate of equal probabilities of microscopic states. This prin-
ciple has no proof; it arises from heuristic arguments. Statistical physics and ther-
modynamics are thus basic concepts for the analysis of systems interacting with
their environment. Before immersing ourselves in the realm of statistical physics,
we will first review concepts of thermodynamics.

7.1
Concepts of Classical Thermodynamics

Classical thermodynamics considers macroscopic systems, which are phenomeno-
logically described by a set of observable parameters. The parameters are charac-
terized as intensive and extensive. The intensive parameters do not depend on the
system size, that is, if the system is divided into two parts, the intensive param-
eters have the same values for all parts. In contrast, the extensive parameters are
proportional to the system size.

The well-known intensive parameters are temperature T, pressure p, and densi-
ty p, and the extensive parameters are mass m, volume V, energy E, enthalpy H,

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
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Isolated systém AP Closed system | .~ 1 Open system | .
- . . N - - . . . ° - - I . . . . . - - I

Reservoir - : ST Reservoir - :
(a) (b) (c)

Figure 7.1 Three different types of systems identified by thermodynamics: isolated system (a),
closed system embedded in a thermal reservoir (b), and open system embedded in a thermal
reservoir (c).

and so on. We can get an intensive parameter from two extensive parameters. For
instance, we can introduce the specific volume v = V/m, which is the volume tak-
en by a unit mass. In the same way we can introduce the specific energy, specific
enthalpy, and so on.

The thermodynamic system under consideration is denoted as isolated when the
system has no interaction with the surroundings. This includes energy exchange
and matter exchange. The laws of conservation of energy and mass thus apply. The
closed system is one which may have exchange of energy with the surroundings,
but the matter of the system is isolated; thus, the mass conservation law is implied.
The third type of system is the open system, which has exchange of both ener-
gy and matter with the environment. These three types of systems are shown in
Figure 7.1.

One of the most important primary concepts in thermodynamics is the concept
of the state of the system. The state is attributed to the whole system under con-
sideration and is defined by the quasi-equilibrium condition. This is the condition
when all intensive quantities are the same throughout the whole system volume;
the system is thus considered as homogeneous. Heterogeneous systems are char-
acterized by different values of the intensive parameters at different parts of the
system; that is, there is no equilibrium state and the system has some transient
fluxes which lead toward a homogeneous state of the system. Alternatively, con-
stant heterogeneity can be maintained by specific external conditions. Such a state
is denoted as the steady state.

Thermodynamics is based on several laws. These are based on specific experi-
mental observations, which cannot be derived from other theoretical arguments.
We briefly review the laws below.

The zeroth law of thermodynamics is defined by an empirical fact that there exists
a specific intensive state parameter called the temperature. If two systems charac-
terized by different temperatures are brought into contact, while no matter is ex-
changed, the states of the systems change until the whole combined system comes
into a new equilibrium. When there is no exchange of matter, the contact is called a
thermal contact and the new equilibrium is the thermal equilibrium. The final state
is characterized by a new temperature. The change of temperature is thus defined
Dby this law. This law also defines the temperature-measuring device. Since the vol-
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7.1 Concepts of Classical Thermodynamics

ume or pressure of a gas or length of some pencil-like solid material changes with
temperature, these geometrical parameters can be measured by creating thermal
contact.

In thermodynamics, concepts of work and heat are among the main quantities
determining the main energy exchange parameters. The work characterizes the
content of mechanical energy that can be brought into the system or out of the
system through the surface. The heat also determines the flow of energy, however it
is not of the mechanical form; it corresponds to the flow of the thermal energy. The
work and heat are thus the properties of interaction and are not system parameters.

Once the system changes its state, the system undergoes a thermodynamic
process. Reversible and irreversible processes are distinguished. The internally
reversible process proceeds over quasi-equilibrium system states until a new equi-
librium state is achieved. Such conditions can, in principle, be maintained by the
irreversible external process. When the process is maintained by reversible external
conditions, the process is completely reversible; however, such a process is never
possible. The irreversible process involves irreversible changes of the system. Such
processes involve a nonequilibrium system state when the system is heterogeneous
and its thermodynamic parameters are poorly defined. In practice all processes are
irreversible.

The first law of thermodynamics is the thermodynamic expression of the conser-
vation of energy. We define the system parameter, which is the internal energy U.
Its change is due to interaction with the surroundings by accomplishment of work
or by heat exchange:

dU=0Q—-0W . (7.1)

Here the direction of heat transfer is assumed to be from the environment to
the system, while the work interaction is the opposite: thus, adding more heat
to the system increases its internal energy (0Q > 0 — dU > 0), while the
work performed by the system on the environment reduces the system energy
(0W > 0 — dU < 0). Note that the internal energy is the system parameter.
However, the heat and the work are not characteristics of the system; thus, their
changes are not directly related to the changes of system states, which are denoted
by different letters.

The second law of thermodynamics defines the direction of the irreversible pro-
cess. To define the direction we introduce the system property, the entropy. For
a closed system, the entropy S defines the change of the system state when the
system reversibly interchanges the heat with the environment at fixed temperature,
that is,

1
dS = =0 Qe - (7:2)
Similar to temperature, this definition describes only the change of the entropy.

Now let us consider two systems: a small system A and its environment as a large
heat reservoir denoted as system B. System A performs the process and at the end
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of the process it returns to the same state. In such a cyclic process, all parameters of
system A (including its entropy) return to the same value (since system A returns to
the same state). If the process is realistic, from our experience, the heatis generated
due to friction and the generated portion of heat in system A must to be transferred
from system A to reservoir B during the cycle. Thus, if we consider the entropy of
system B, dSg = 1/ TS Qgen > 0. Note that the entropy change of system A is zero,
since it returns to the same state. We thus get that the total entropy of both systems
dS =dSs +dSg > 0.

The second law thus determines the direction of the process: the realistic irre-
versible process in the isolated system is always characterized by increasing en-

tropy
ds >0, (7.3)

which becomes largest in the equilibrium state. The reversible cyclic process has
zero entropy change,

dSrey = 0. (7.4)

The two laws of thermodynamics describe the possibility and the direction of
processes. The third law of thermodynamics defines the entropy of a system at zero
temperature. The entropy at this point is minimal and can be assigned a zero value
as it is a finite constant. Analysis of thermal processes allows us to conclude that
zero absolute temperature and the lowest value of the entropy are unreachable in a
finite number of processes.

Thermodynamics considers quasi-equilibrium processes. The change of the in-
ternal energy is the central quantity of interest. It changes due to thermal interac-
tion

0 Qrey = TdS, (7.5)
mechanical interaction
OW = pdv, (7.6)

and chemical interaction in open systems, which changes the number of con-
stituent particles of the system N, and any other types of interaction. All the in-
teractions can be described in the form

Zforcei - displacement; . (7.7)

1

For thermal, mechanical, and chemical interactions we have
dU = TdS — pdV + udN, (7.8)

where u is the chemical potential. It is the energy which is being added to the
system when the number of particles is increased by 1.
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7.2 Microstates, Statistics, and Entropy

Thermodynamic potentials, such as the internal energy, U, the free energy

F=U-TS, (7.9)
and the enthalpy
H=U+pV (7.10)

are the most useful for description of thermodynamic systems. Additional ther-
modynamic potentials and relations between them are briefly described in Ap-
pendix A.4. The equilibrium of all constituent forces determines the thermal equi-
librium between different parts of the system.

7.2
Microstates, Statistics, and Entropy

In statistical physics the concept of a microstate is defined and it is related to the
system entropy. Let us consider a classical system consisting of N particles. In the
classical description the state of such a system is completely defined when the coor-
dinates g; and the momenta p; of all particles are known. In the 6 N-dimensional
space consisting of all coordinates and momenta of all particles, such a state is a
single point. The space is denoted as the phase space, while the state is called the
microstate. As in an arbitrary space, we can denote the phase space element

do = d*Nqd*p = dgqidg,...dgndpidp, ... dpy . (7.11)

If the system is isolated, the total energy of the system is conserved during the
propagation of the microstate. The total energy is an experimental observable, that
is, it is a macroscopically accessible parameter, while the microstate (all coordi-
nates and momenta of particles) is not observed. In the classical thermodynamics
described in the previous section, the system is characterized by macroscopic state
parameters. From these arguments we can thus associate the observable quanti-
ties derived from the microscopic dynamics with the macroscopic thermodynamic
parameters.

For a given macroscopic state defined by a finite set of parameters there are a
large number of microstates. As an example we recall that the whole microscopic
trajectory is characterized by the same macroscopic energy. We denote the number
of microstates corresponding to a specified macroscopic state by £2. Of course 2
depends on a set of macroscopic parameters that define the given macroscopic
state. Below we form a relation between macroscopic and microscopic parameters.

Let us consider a macroscopic system, described by energy, volume, and the
number of particles: E, V, and N, respectively. If we divide the system into two
parts, we get

E=FE+FE, (7.12)
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V=vi+V,, (7.13)
and

N=N +N,, (7.14)

respectively. Now the total number of macrostates of the total system Q (E, V, N) is
the product of the number of microscopic states of the two subsystems:

Q(E, V,N) = (E, V, N)2,(E, V, N).. (7.15)

The main principle of statistical physics affirms that all microscopic states of the
isolated system have the same realization probability. Then the macroscopic state
probabilities are completely defined by the number of microscopic states compris-
ing the macrostate. According to the set theory of Section 3.1, the most probable
macroscopic state should have the largest number of microstates when each mi-
crostate has equal probability.

Differentiation of (7.15) yields

dQ =d@;- 2, + 2,-dQ,, (7.16)
or

dlnQ =dln2, +dln 2, . (7.17)
In the extremum we should have

dlnQ =0. (7.18)

As Q is a microscopic parameter, this result describes the most probable state
of the system, which is equilibrium. From the thermodynamics, the equilibrium
state is defined by the extremum of entropy, so

ds =0. (7.19)
Thus, we can postulate that
S(E,V,N) = kgIn Q(E, V,N) . (7.20)

The entropy defined by this equation is a proper extensive parameter. The propor-
tionality constant is taken as the Boltzmann constant kg, which properly normal-
izes the units.

To get this result we have assumed the concept of a closed system, where all
microstates are equally likely. This assumption is the basic postulate of statistical
mechanics. However, in the next section we consider open systems, where different
microstates are not equally probable, and some weighting factors have to be taken
into account.
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7.3 Ensembles

7.3
Ensembles

In this section we describe three types of statistical ensembles. Therefore, we in-
troduce the probability density, or the phase space density p(q;, p;). p(q;, p;)dw
denotes the probability of a microstate, defined by g, and p; in volume element
d*Ng-d3¥p = dw. The probability density is normalized so that

[ dontapn=1. (721)

If f(q;,pj) is some observable function of all particle coordinates and momenta,
the experimentally measurable value is the average quantity:

(f) = / dwp(a;, ;) fld;p)) - (7.22)

Since each point in a phase space can be identified with the copy of the system
being in that state, the average here can be associated with the ensemble average.

7.3.1
Microcanonical Ensemble

Let us consider the closed system shown in Figure 7.1a. The phase space density
of a closed system is characterized by constant energy. The copies of such a system
may be in different microstates, but all of them have the same average energy. Such
systems compose the microcanonical ensemble.

Let us introduce the energy uncertainty AE. In that case the system, described
by the energy from E to E + AE, is described by the phase space density of the
form

const, E<H(gq;,p;)<E+AE,
pmczi @j.p;) (7.23)

0, otherwise .

Above we denoted the number of microscopic states corresponding to the specified
macroscopic state by £2. This number can be used in the normalization of (7.23).
The microcanonical phase space density is thus

(7.24)

&, E<H(qpj)<E+AE,
Pmc = .
0, otherwise.

We can now use this density to write the entropy as an ensemble average.
From (7.22) and (7.20) we assume that S(E, V, N) = (S(g;, pi)) and

/da)pmc(qi,pi)S(qi,pi) = th’lQ(E, V, N) , (725)
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where S(q;, pi) is the “entropy” functional of a single microstate. Using the micro-
canonical phase space density, (7.24), we have

S(qi, pi) = —kp In pmc(qi, pi) - (7.26)

This derivation can be considered as another form of (7.20); however, this expres-
sion in principle is not limited to the microcanonical phase space density. In gen-
eral, we can postulate the entropy of a system is given by

S = —kB/dwpln(p) . (7.27)

Extension to this expression is readily used in quantum physics to describe the
quantum entropy.

Let us derive some useful property of a closed system density matrix. According
to the classical description, all coordinates and momenta of the system under con-
sideration evolve in time. The temporal evolution of the single system corresponds
to a curve determined by the Hamilton equations of motion (which were defined
in Chapter 2):

dH
qi = , (7.28)
api
dH
o= 2 29
p oa; (7.29)

In the closed system the Hamiltonian does not depend on time explicitly and thus
the total energy does not depend on time. For an arbitrary quantity which is a
function of the microstate, we can write A = A(q;(t), pi(t), t). Its time dependence
is described by

dA  0A 0A . 0A
dA _ A AL 30
ETRRFT +2i: i Tt ? (7:30)

and taking into account the Hamilton equations, we have

dA 0A 0A 0H 0A 0H

T Z dq; dp;  Op; 0q; 730
or

dA 0A

FTERT) +{A H}. (7.32)
Here

_N9f 9g _of g
{f’g}_za%api dpi 0q; 7:33)
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are the Poisson brackets. Equation (7.32) applied to the phase space density reads

do dp

% oy 7.34

a3 T H (7.34)
In the course of time the different points of the phase space propagate along differ-
ent trajectories. As the dynamics is reversible, no points are gained and no points
are lost; thus, the phase space density must be conserved. Mathematically this state-

ment can be defined as

dp

= .35

7 =0 (7.35)
or

dp

% —{p,H}. (7.36)

This is the Liouville theorem for an arbitrarily closed system.

7.3.2
Canonical Ensemble

We next describe the system embedded in a thermal reservoir. This type of system
is shown in Figure 7.1b. Given the system and the reservoir described by tempera-
ture T, the total energy of the whole system and the reservoir is

E=Fg+Es. (7.37)

The whole composite supersystem, that is, system plus reservoir, constitutes a
closed system, whose energy E should not change and can be treated as a con-
stant value. Different from the previous microcanonical ensemble, now the energy
of the system part, Ej, is not fixed. We can thus calculate the probability p; of the
system being in microstate i of the system with energy E;. When the system size is
much smaller than the size of the reservoir, the number of degrees of freedom of
the system is vanishingly small compared with that of the reservoir. The probability
pi is then proportional to the number of microstates of the reservoir. The reservoir
has energy E — E;; thus, its number of microstates is denoted by Qg (E — E;) when
the microstate of the system is i.

Using the relation E; <« Eg, we can expand the number of microstates of the
reservoir Qg in powers of E;. Let us consider the entropy of the reservoir, Sg =
kg In Qp. Expansion up to the first power gives

d(kB In .QR(E))
dEr

while higher powers can be disregarded. For the reservoir approaching infinite size,
and keeping in mind that only heat exchange is happening between the system and
the reservoir, so 0 Q = d Eg, we get from (7.2)

dSe(E) 1

B T T (7.39)

SR = kB anR(E — El) = kB anR(E) - Ei + ..., (738)
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thus,
kB In QR(E — El) = kB In QR(E) — %E, (740)
or
E;
B

Thus, the system can now have arbitrary energy, but the probability decreases ex-
ponentially with increasing energy. Normalization of the probability gives the pref-
actor:

E;
Z(T) = Z exp (—kB—T) : (7.42)

This quantity is known as the partition function of the canonical ensemble. Itis one
of the central quantities of statistical physics, and allows us to calculate significant
thermodynamic properties. The quantity

F(T) = —ks TIn(Z(T)) (7.43)

can be associated with the free energy of the system (see Appendix A.4).
When the system is described by classical particles, we should write the proba-

bility density

1 H(qi, pi)
hpi) =~ - , A4
P(di, pi) ZeXP( ke T (7.44)
where H(q, p;) is the classical Hamiltonian. The partition function is now given
by
H(qi, pi
Z = /qude exp (—M) . (7.45)
kg T

These equations constitute the so-called Boltzmann statistics and the probabili-
ty distribution is the Boltzmann probability distribution. They are general in the
sense that they are easily extended to quantum physics, where the probability den-
sity is replaced by the density matrix and all properties of the thermodynamics can
be evaluated. Some applications of Boltzmann statistics will be given in the follow-
ing sections. Note that in the relaxation problems of weakly interacting systems,
use of Boltzmann statistics is usually sufficient.

7.3.3
Grand Canonical Ensemble

In previous subsections we described systems whose number of particles is fixed.
In this subsection we consider the open system, where the exchange of energy and
matter is allowed as shown in Figure 7.1c.
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Similar to the case of the canonical ensemble, we again consider the system em-
bedded in a reservoir characterized by constant temperature and constant chemical
potential for constituent particles. The system size is much smaller than that of the
reservoir; thus,

E=Es+ Eg, (7.46)

N = Ng + Ng, (7.47)
Es/Er < 1, and Ng/Np « 1. The system is now open, so it can have an arbitrary
number of particles and arbitrary energy. We now consider the probability of the
system being in a state with Ng particles and energy Es. As the whole system plus
reservoir supersystem is a microcanonical ensemble, the particular state of this
ensemble is given by the number of microstates. Since the size of the reservoir is
much larger than the size of the system, the number of microstates is determined
by the microstates of the reservoir. The probability will thus be proportional to the
number Qg (Eg, Ng).

Let us construct the entropy of the reservoir similarly to (7.38):

SR(ER, NR) = kB InQ (ER, NR) . (748)
We can expand this quantity around Eg ~ E:
OSR(E,N) . 0SR(E,N)

Sw(Er, Na) ~ Se(E, N) = = Es o N (7.49)
From (7.8) we have
ISR(E,N) 1
LA A S5
oF T (7:50)
and
ISR(E,N) _ u
=T (7.51)
which gives
1
ko In 2 (Ev, Ne) = S(E, N) — = Es + %NS (7.52)
or
! ! E N, 7.53
= —— &X e — . .
ps ng kBT(s#s) (7.53)

The normalization factor is denoted as the partition function of the grand canonical
ensemble: it can be defined from

N
1
Zy = Z /dql...qudpl...deeXp (—kB—T(ES—/tNS)) . (7.54)

Ns=1

The probability density is thus given by
H(qipi 0
exp (__l(c?ﬂ" ) + _kéT N)

Y nSdgi...dgndpr...dpyexp (—% + kBLTN)

P(N,qipi) = . (7.55)
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7.4
Canonical Ensemble of Classical Harmonic Oscillators

Let us consider an ensemble of N harmonic oscillators at temperature T having the

same frequency w and mass m. As shown in Section 2.1.3 the system Hamiltonian
can then be given by

N
H _ 3 (= 28a 7.56
(Ga> Pa) = Z . + mw > (7.56)

a=1

First we calculate the free energy of this system. In continuous space we use the
dimensionless phase space element (1/h)dgdp, where h is the Planck constant
(see Appendix A.5). The partition function in the case of continuous space is then
a function of temperature and the number of oscillators, so

1 (5 H(qupa
Z(T,N) = N (H/dqadpa) exp (—%) . (7.57)

All integrals are of the Gaussian type:

g2
/dx exp (—%) =+nD, (7.58)
which yields

N
Z(T,N) = (kBT) . (7.59)

hw
The phase space probability density, which is equivalent to the probability of a
microstate, is given by
— H apra
plgupa) = Z Vexp (—%) . (7.60)
B

The entropy of the system is now

1 (N
S=13% (]_[/dqadpa) P(qupa) [~kelnp(@apa)] (7.61)
which for our system is

S =kgN [1 +1n (I;B—wT)} . (7.62)

This expression for the entropy is actually of the form

S:kgan—i-%(H). (7.63)
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7.5 Quantum Statistics

Now the mean energy of the system (H) = U is the internal energy of the system.
For the free energy of the harmonic oscillators, from (7.43) we get

HINyz—@Tmz:—N@Tm(%%) (7.64)
and the internal energy (7.9)
U=F+TS=NkgT, (7.65)

which is consistent with the ideal gas expression. Thus, the harmonic oscillators
represent the bosonic ideal gas.

7.5
Quantum Statistics

Having in mind previous sections where we defined the statistical properties of
thermodynamic quantities and introduced the elements of the phase space, we can
straightforwardly extend the theory to the quantum density matrix formalism.

As shown in preceding sections, the phase space probabilities essentially depend
on the system Hamiltonian. It is thus convenient to use the eigenenergy basis. In
this case the energies of quantum states are properly defined. The system density
matrix in the eigenenergy basis in the stationary state is diagonal:

Pmn = PnOmn - (7.66)

Now the quantity

Pn = (PnlplPn) (7.67)

is the probability that a system assumes state n.

In the microcanonical ensemble we measure the probability of a system being
in a state defined by the energy interval from E to E + AE. All states with energy
inside this interval have equal probability, which is a fundamental assumption of
equal probability of microstates. In that case the probabilities must be defined as

L E<E,<E+AE,
pn =12 , (7.68)
0, otherwise.

Similarly to the classical description, the factor £ should be obtained from the
normalization condition of the total ensemble.

All states in the canonical ensemble are allowed, while their probabilities depend
on their energy. In the eigenenergy basis these quantities are given by

exp(—p En)

= 7.69
P >_i exp(—BE;) 7%

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

173

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

174

Chap. c07 — 2013/6/3 — page 174 — le-tex

7 Statistical Physics
where 8 = (kg T) L. The partition function is similarly given by

Z = exp(-BE,). (7.70)

Using the notation of the function of an operator, we can write the canonical density
matrix in an arbitrary representation:

exp(—p H)

., (7.71)
tr(exp(—p H))

/3 =
where H is the quantum mechanical Hamiltonian of the system. Now a physical
observable of the system represented by operator A is given by

A= (A) = tr(Ap) . (7.72)

The equations are thus equivalent to the ensemble averaging in the classical case,
just the probability densities are replaced by the density matrix and the integrals
over the phase space are replaced by the trace operation.

7.6
Canonical Ensemble of Quantum Harmonic Oscillators

In Section 7.3.2 we calculated probabilities and thermodynamic properties of the
classical harmonic oscillator. The quantum harmonic oscillator is described by the
same Hamiltonian as in the classical system, but the coordinates and momenta
of the phase space are replaced by the corresponding operators. The Hamiltonian
then generates a ladder of states E, = hw(n + 1/2) separated by the harmonic
energy quantum Ao, as described in Section 4.6.1.

Once the state energies are known, the density matrix in the second-quantization
(number of quanta) representation is diagonal. The diagonal values are simply giv-
en by

B exp(—fhw/2)

Prn = - exp(—fhwn) (7.73)
and the partition function
B Phw B 1
Z = exp ( 5 zﬂ:exp( Phon) = Isinh(Bha)2) (7.74)

so the complete expression for the density matrix is

Pnn = 2sinh (ﬁhTw) exp (—ﬂha} (n + %)) . (7.75)

We will now obtain the canonical density matrix in the coordinate representation.
The wavefunctions in the coordinate representation are given by (4.105). Note that
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7.6 Canonical Ensemble of Quantum Harmonic Oscillators

the density matrix is no longer diagonal in this coordinate representation since
the coordinate operator does not commute with the Hamiltonian and the energy
eigenstates are not eigenstates of the coordinate operator. The canonical density
matrix in the coordinate representation is then given by

(x'1l%) = D w (X )onn k()

= Nexp (—7962 ; X — ﬁTw) Z SpTPO ;;f!wn)?'ln(x)’}-ln(x’) ,

n=0

(7.76)

where N is the normalization constant, which we determined from the normaliza-
tion of the diagonal of the density matrix — the probability density — and H(x) is
the Hermite polynomial (see (4.104)). We also set m = i = 1. Using the integral
representation of the Hermite polynomials, we get

Ha(x) = e"g‘;z’ [ dvainy expioy? + 2ixy), 7.77)

and calculating the Gaussian integrals, we get with proper normalization

e o \"
{x’|plx) = 2sinh (T) (Wh(ﬁw))

X exp (—% ((x + x’)?tanh ﬁTw + (x — x")% coth ﬁTw)) .
(7.78)

This yields the Gaussian distribution for the coordinate along the diagonal:

1/2
<X|,6|X) = ZSinh (ﬁTw) (#h(ﬁw)) exp (—wxztanh ﬁTw) .
(7.79)

In the high-temperature limit we obtain the classical distribution function

2\ 1/2 2
(x|p|x) — (ﬁz—a:t) exp (_ﬁwaz) . (7.80)

An interesting quantity is also the quantum coherence given by the off-diagonal
elements of the density matrix. Assuming x ~ x’ but x # x’, we denote Ax =
x — x’, and in the high-temperature limit we have

1
(x|p|x) o exp (— i sz) . (7.81)

The coherence thus decays as the coordinates separate, and this dependence be-
comes sharper as the temperature increases. Thus, in the high temperature of the
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classical regime, the density matrix becomes the classical probability distribution
obeying Gaussian statistics.

In the case of N independent oscillators, we will have each oscillator in a specific
state n,, so the density matrix is

N
Pinnyy = w exp (— > ﬁhwna) , (7.82)
a=1
where
. Sho\1 N
Z = |:2 sinh (T)j| . (7.83)

Thus, the density matrix completely factorizes into products of individual density
matrices of different oscillators:

N
Pinnye = l_[ 2sinh (ﬁhTw) exp (—ﬁhw (na + %)) . (7.84)

a=1

7.7
Symmetry Properties of Many-Particle Wavefunctions

When we describe particles in quantum mechanics we formulate the problem us-
ing operators instead of observables. The convenient operators are usually the coor-
dinate and momentum operators. The calculated wavefunction contains so many
spatial coordinates as there are particles; however, these coordinates should not
be understood as the coordinates of particles — these are only wavefunction pa-
rameters. The quantum particles are indistinguishable. The wavefunction is thus
a multidimensional field of the quantum amplitude in real space. We often refer to
the charge cloud or density.

The wavefunctions possess some specific symmetry with respect to particle per-
mutation. Consider the many-particle wavefunction ¥(ryr;... ry). Let us assume
there exists an operator which interchanges coordinates i and j:

ﬁijW(rl...ri...rj...rN)zsl[’(rl...rj...ri...rN), (7.85)

where s is some constant. As the Hamiltonian must be invariant to a change of
the parameter order (interchange of identical particles), the wavefunction of the
Hamiltonian is also the eigenfunction of the permutation operator. Note that appli-
cation of the operator P; j twice on the wavefunction brings about the same original
wavefunction. From (7.85) then it follows that s> = 1, or s = 41. We thus find that
there may be two types of particles: particles characterized by a symmetric wave-

function, where s = 1, and particles with s = —1, which have an antisymmetric
wavefunction.
Consider noninteracting quantum particles. The total Hamiltonian is given by
H(nr...pipa...) = Y ripi), (7.86)
i
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7.7 Symmetry Properties of Many-Particle Wavefunctions

where ﬁ(ri pi) is the Hamiltonian of the ith system. Let us assume that we can
solve the eigenvalue problem for a single system, that is,

h(rip)pr(r) = expr(ri) . (7.87)

The total wavefunction can then be taken as the product of all wavefunctions of
individual systems:

Yty en (M2 TN) = TN i (i) (7.88)
with energy
N
E=)¢,. (7.89)

However, this product state is the eigenstate of the Hamiltonian, but it does not
have a proper symmetry. Therefore, it has to be additionally symmetrized. We can
create the symmetric and antisymmetric wavefunctions as a superposition of all
possible permutations:

Pr(n) Qi) ... Piy(n)
. D) Duin) o Dryin)
Py (M72--.1) = Ks | R : . (7.90)
Pra(rn)  Pr(rn) oo Pry(ra)ly
Pu(r) Qi) .. Piy(n)
) Pri(r2)  Pia(r2) oo Piy(r2)
"Uklkz...kN(rer P I’N) = KA . . .. . (791)
Pr(rN) Pi(rn) o Piy(rN)

Here Ks and K, are the normalization constants, |...|4 denotes the permanent:
the sum of all possible products as of the determinant where the signs of all terms
are “+.”

For the antisymmetric wavefunction Ky = (N!) and the sum of the prod-
ucts is a determinant, denoted the Slater determinant. This form of the determinant
guarantees that the two particles cannot have the same quantum numbers: the de-
terminant is equal to zero if any two coordinates, as quantum numbers, become
identical. This demand is expressed by the Pauli exclusion principle, which is valid
for half-spin quantum particles, called fermions. The symmetric wavefunction does
not have this requirement — many particles can have the same state and the nor-
malization becomes

1
A/ N!n1!n2! ce ’

where n; is the number of particles in state i. Particles obeying this type of sym-
metry have integer spin and are called bosons.

—1/2

Ks = (7.92)
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It is constructive to switch to the occupation number representation of one-
particle states. Let the one-particle states be labeled by |k) so that

hlk) = eilk) . (7.93)
The occupation numbers of these states are ny. They obey the restriction

> me=N. (7.94)
k

We can now denote the many-particle state as |nq, n,...), and it is an eigenfunc-
tion of the total Hamiltonian

I:I|n1,n2,...) = |:Z sknk:| |n1, na,...) (7.95)
k

as well as of the number operator
Aglny, na,...) = nglng, ny,...) . (7.96)

In this representation the fermions and bosons are identified by a set of possible
occupation numbers. In the bosonic case the occupations nq, ny, ... in a specific
state |nq, ny,...) can be arbitrary positive integers (of course (7.94) has to be satis-
fied). In the fermionic case, an additional restriction applies, so each ny must be 0
or 1.

7.7.1
Bose—Einstein Statistics

Let us assume we have a set of bosons. The canonical density operator is diagonal
in the occupation number representation. We can write the diagonal term as

1
(p )thnz... = - &Xp (_ﬁ n’k‘(/‘k) B (797)

and the partition function is
Zc = Z exp (—ﬁ Z n sk) . (7.98)
{nkd k

Here the sum denotes the summation over all possible configurations of the occu-
pation numbers with the condition of (7.94). In the same way the grand canonical
ensemble is given by

1
(PG) ... = 7o &P (—ﬁ > mler - u)) (7.99)
k
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with the grand partition function
Zc = Z exp (—[3 Z ne(er — /,t)) . (7.100)
i} k

This expression can be rewritten as

oo o0
Ze =[] X0 expl-mblex—p) (7.101)
k=1n,=0
while the resulting sum of exponents is
o 1
exXp(=mipler — f)) = . 7.102
2 R ) = e = (7102

ny=0

The thermodynamic quantities can now be conveniently calculated from the par-
tition function. For instance, the mean energy (for the derivation, see Appendix A.4)

U= (H) :—%anG = Xk:exp(ﬁ(e;fk—u))—l’ (7.103)
while the mean number of particles
N=(N)= kT2 In Ze=Y_ ! : (7.104)
du ~ exp(B(er —u))—1
Considering (7.94), we have for the mean occupation of state k
! (7.105)

" expBler—p) -1

which is the famous Bose—Einstein distribution. This distribution is plotted in Fig-
ure 7.2. As the temperature becomes lower, the real distribution becomes sharper
and all bosons occupy the lowest-energy state. This transition is denoted Bose con-
densation. At low occupation numbers the distribution approaches the exponential
Boltzmann distribution.

Note that quanta of electromagnetic radiation, the photons, do not interact with
each other and so their chemical potential 4 = 0. The photons have integer spin,
and thus they obey Bose-FEinstein statistics. Each of the photons has energy Ao at
frequency w. The mean number of photons at this frequency is then given by

1
exp(Bw) —1°

As kg T at 300 K is approximately 25 meV, the number of photons in the microwave
region (how < kgT)is

n(w) = (7.106)

T
n(w’ T)'long wavelength X Z ) (7107)
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20r
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-10 5 0 5 10
(E —p)/(KT)

Figure 7.2 The distribution of the Bose-type occupation probability is represented by the solid
line and that corresponding to the Fermi-type probability is represented by the dashed line.

while in the visible and UV regions iw > kg T, and these modes are mostly in the
vacuum state, giving

w
n(w, T)'shortwavelength = exp (_?) — 0. (7.108)

7.7.2
Pauli-Dirac Statistics

For fermions we can write the same set of equations as for bosons. Consider the
grand canonical ensemble. Its density matrix is diagonal and the diagonal values
are

(PG)mina.. = ZLG exp (—ﬂ > (e — /A)) : (7.109)
k

with the grand partition function

Zg = Zexp (—ﬂan(sk—/A)) . (7.110)
k

{ni}

However, now different from bosons, the numbers ny, are either 0 or 1. The parti-
tion function thus takes a simple form:

Ze = [ [(1 + exp(—Bler — ) - (7.111)
k

We follow the same procedure as for bosons and calculate the mean energy

— €k
v Xk: exp(B(er —u) +1° 712
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The mean number of particles is given by

1
N = . 7.113
2 opiflee )+ 1 74
This gives the mean occupation of state k:
1
(7.114)

" exp(Bler —w) + 1

which is the famous Fermi-Dirac distribution.

This distribution (together with the Bose distribution) is shown in Figure 7.2. In
the case of fermions the distribution becomes steplike as the temperature decreas-
es. This is the state where all fermions fill all available states up to the Fermi level
E = u. This is because no two fermions can occupy the same state.

7.8
Dynamic Properties of an Oscillator at Equilibrium Temperature

The canonical density matrix is a static property of the quantum system which
can be used to describe the thermodynamic properties of classical and quantum
systems. However, in Section 3.8 we encountered the quantity of the stochastic
force, which was not identified explicitly. Statistical physics also allows an explicit
identification of the dynamic stochastic parameters, which at equilibrium constant
temperature can be treated as stochastic coordinates or stochastic forces acting on
systems.

For this purpose we consider the harmonic oscillator once again. The quantum
mechanical properties of a harmonic oscillator were considered in Section 4.6.1
and the Hamiltonian can be given by:

(7.115)

Here p is the momentum operator, m is its mass, w is the frequency (we use w
instead of w as to be distinct from the frequency parameter of the Fourier trans-
form), and % is its coordinate operator. It is convenient to reformulate the prob-
lem in terms of creation/annihilation operators by using (4.243) and (4.244) in the
forms

%= l% (@’ + a) (7.116)
and

=L Gt _a) (7.117)

p l ﬁ ’ .
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where we introduced the length scale

T (7.118)
mw
Having coordinate-momentum commutator identities, (4.4), we get the boson
commutation relation (4.250) and the Hamiltonian in the form defined by (4.251).
Now instead of coordinate and momentum dimensional operators, we have a
dimensionless representation in terms of the creation and annihilation operators.
The equilibrium canonical density matrix of the oscillator at constant tempera-
ture has been calculated exactly, (7.75). This diagonal form of the density operator
constitutes the complete statistical mixture of quantum states as all coherences are
completely zero. We now turn to the dynamic properties of the oscillator. Consider
the coordinate operator %. The characteristics of the coordinate at equilibrium are
the mean value and its variance. The mean value is
%=tz W) = zﬂ: R (Weq) =0 (7.119)
as should be expected since in (7.116) % is given as a single power of creation and
annihilation operators, while the density matrix is diagonal. Now the variance can
also be calculated:

- 12 h
ot =x2—x*= 3 coth (ﬁTw) . (7.120)

We thus get a strong dependence on temperature, f = (kg T)™!. This ¢ depen-
dence on the temperature is shown in Figure 7.3. We find that at low temperature,
when fAw > 1, only the lowest-energy state of the oscillator is occupied and the
coordinate is dispersed in a finite region (¢ — 12/2). However, at high tempera-
ture, fAw < 1, higher states of the oscillator are occupied and 6% — 12ky T/(hw).

This result is intimately related to the probability density for finding the oscillator
at coordinate x. Quantum mechanics dictates that this is given by the square of the

3.0¢
2.5F
o 2.0F
2 15t
1.0F
0.5

0.0 0.5 1.0 15 2.0
Bw

Figure 7.3 Variance of the density distribution as a function of temperature as defined
in (7.120).
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7.8 Dynamic Properties of an Oscillator at Equilibrium Temperature
amplitude of the wavefunction, |¢,(x)|?, when the oscillator is in state |n). Having
the equilibrium density matrix in (7.75), we can perform the sum over all states.
This result is essentially the coordinate representation of the density matrix given
by (7.78). For the probability density we have a Gaussian shape for the coordinate
along the diagonal:

(x|plx) = S S— (—M) (7.121)
PR = T TR coth(Bwy2) P\ coth(Bwy2) ) ’

The harmonic oscillator in thermal equilibrium is thus a Gaussian system. At low
temperature the distribution does not contract to the Dirac delta distribution,

(x|p|x) — l\}ﬁ exp (— (%)2) , (7.122)

because of quantum uncertainty.

An equivalent distribution can be calculated for a classical harmonic oscillator
using the classical canonical statistical probability distribution. The potential en-
ergy of the classical harmonic oscillator is given by the parabolic function of the
coordinate, V(x) = mw?x2/2, and the probability of reaching a certain energy at
finite temperature is governed by the Boltzmann law. The coordinate distribution
function is therefore

cl 2 w
0D (x) o< exp (—x h T T) , (7.123)
which is equivalent to (7.121) when kg T > Aw. Thus, the quantum harmonic
oscillator behaves classically at high temperature, while its quantum properties
emerge only at low temperature. This transition is defined by comparing the ther-
mal energy, kg T, with the oscillator quantum level splitting, Zw.

As the coordinate of an oscillator (classical or quantum) is defined only through
the distribution function, we interpret this as the result of stochastic fluctuations.
The fluctuations have zero mean and nonzero variance. The other, dynamic prop-
erty of the equilibrium oscillator, which is relevant to further chapters, is the coor-
dinate correlation function. The equilibrium oscillator is thus a dynamic system ex-
ecuting Brownian-like motion. These fluctuations correspond to the thermal noise
only at high temperature. When the temperature is low, kg T < Aw, we found that
the coordinate distribution remained broad in the quantum case with temperature-
independent variance. In this regime we should attribute fluctuations to the quan-
tum vacuum or noise.

The correlation function will be defined in the Heisenberg representation, where

(1) = exp (%Ht) % exp (—%I:It) , (7.124)
and similarly

p(t) = exp (%I:It) pexp (—%I:It) . (7.125)
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The coordinate correlation function is given by
Cux(t) = (x(t)%(0)) = trp (X(£)%(0) Weq) -

Using (7.116) and noting that the equilibrium density matrix is diagonal, we get

(0) Weq + G(t)aT(0) Weq) (7.1206)

—
o~}
—_
[
=
~
—
>

where we defined the time-dependent annihilation operator
A i~ . i
a(t) = exp (5 Ht) a exp (—gHt) (7.127)

and a similar expression for the time-dependent creation operator.
According to the definition of the correlation function, let us define

Cytalt) = trp (a7(2)a(0) Weq)
= exp(iwt)[1 — exp(—fw)] Z nexp(—phwn) (7.128)
and
Cogt () = trg (8(£)aT(0) Weq) = CJ5,(£) + exp(—iwt) . (7.129)

After performing the infinite summation of exponential functions, we get

. exp(—phw)
Caialt) = D7 130
walt) = expliwt) T — = (7.130)
thus giving the following expression for the coordinate-coordinate correlation
function:
Conlt) = = eoth (P27} ~isingwe 7.131
xx(f) = T cos(wt) co 5 isin(wt) | . (7.131)

This function describes the very basic fluctuation properties of a harmonic oscilla-
tor at temperature T o f71.
Note that the correlation function is a complex function with properties

Cox(t) = CF,(—1) . (7.132)

The dependence of the correlation function on temperature is not trivial: the imag-
inary part of the correlation function does not depend on temperature, while the
real part is highly nonlinear. In the low-temperature limit fAw > 1, only the low-
est state of the oscillator is occupied and both real and imaginary parts have the
same magnitudes, so

i) et (7.133)

- 2mw
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This is the regime of quantum noise. In the high-temperature limit fAw < 1, the
real part becomes proportional to temperature and the temperature-independent
imaginary part can be disregarded. We then get the classical result:

kg T
Ca(ccaZ(t) = mbz

cos(wt) . (7.134)

The correlation function as it is for the single oscillator is thus a continuous
periodic function as should be expected for a harmonic oscillator. At zero time in
the quantum case C,,(0) = A/(2mw) coth(SAw/2) we get the finite variance of the
coordinate, while at later time we have the complete correlation of the harmonic
motion.

Let us take the Fourier transform of the correlation function as described in Ap-
pendix A.5. We get

Cyx(@) Efdtei“"cxx(t) = ;n—nw {coth (ﬁhTw) [0(w + w) + O(w — w)]

+ [0(w —w)—d(w + w)]} . (7.135)

The Fourier transform is thus a real function and it has two components: the even
part,

() = hﬂw coth (ﬂTW) [0(w + w)+ d(w—w)], (7.136)
and the odd part,
Cli(w) = 2%} [0(w +w) = O(w —w)] . (7.137)

As we find, the odd part does not depend on temperature and is thus the pure
characterization of the oscillator. We can also form the general relation

Cix(w) = C7(w) coth (ﬁhTw) : (7.138)

and we can write the full correlation function as

Cyx(w) = C/ (w) |:coth (,6?21_60) + 1] (7.139)
or
Cux(t) = / i—?:c;’x(w) [cos(a)t)coth (ﬁhTw) —isin(a)t)} . (7.140)

We thus see that in principle all properties of the harmonic oscillator are contained
in a single time-independent entity C7/, (w). We can denote the function C7, (o)
in (7.137) as the spectral density of the harmonic system, which in our specific case
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is just a single delta peak. However, (7.138)—(7.140) imply general relations where
the spectral density can be taken as an arbitrary real-value continuous function
satisfying

Cli(w) = —C (~w) (7.141)
and thus
C’w=0)=0. (7.142)

As we find later, the same type of relations are obtained for a collection of harmon-
ic oscillators, but the spectral density is an infinite sum of delta peaks, and thus
simulates the continuous function.

7.9
Simulation of Stochastic Noise from a Known Correlation Function

In Section 3.8 we assumed that a specific stochastic process such as Brownian mo-
tion generates the stochastic trajectory and that the trajectory can then be character-
ized by a correlation function. In the previous section we developed a very delicate
procedure for how the statistical physics of a harmonic oscillator is related to the
stochastic dynamics. If we want to propagate the stochastic Langevin-like equation,
it is necessary to have the stochastic trajectory of a specific kind, characterized by
a specific correlation function. In this section we describe the procedure to obtain
the stochastic noise trajectory with the requested statistical properties.
Consider a stochastic process z(t). We assume that its Fourier transform

Z(w) = /dt exp(imwt)z(t) (7.143)
is integratable, so Z(w) is also a stochastic function of frequency (in practice fi-

nite sets of data are used, and thus the integration can be always performed). The
inverse transform is then given by

dw .
z(t) = / — exp(—iwt) Z(w) . (7.144)
27
When the process is ergodic, the correlation function that appears in the stochas-
tic Schrodinger equation apart from the normalization factor can be calculated as
the following integral:
C(t) = (z*(t)z(0)) = /drz*(t +7)z(1) . (7.145)

Now we insert the Fourier transforms of the stochastic processes and get

C(t) = / (21—: exp(int) Z* (w) Z(w) . (7.146)
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Finally, the Fourier transform of the correlation function

Clw) = /dtexp(iwt)C(t) (7.147)
leads to
Clw) = |Z(w)]*. (7.148)

This relation is the form in the Wiener—Khinchin theorem [40]. It also states that
the frequency image of the autocorrelation function is always a real function.

This theorem can be employed to generate the stochastic trajectory itself. Let us
define the amplitude and the phase of the stochastic process in the Fourier space:

Z(w) = {(w)exp(ip(w)) . (7.149)

Both £ and ¢ are real functions of frequency. From the Wiener-Khinchin theorem
it follows that

{(w) =/ Clw). (7.150)

{(w) is thus fully defined by the correlation function of the process and therefore
is not a stochastic function. The phase of the process is the stochastic function:
it remains undefined by the correlation function and it can be chosen as some
known stochastic process. From the Wiener—Khinchin theorem it does not affect
the correlation and in practice it can be taken as a zero-correlated white noise, for
example, it can be taken as a linearly distributed random number for each value of
the frequency. However, in order to have the proper case that the imaginary-valued
fluctuations become negligible at high temperature when the correlation function
becomes symmetric, we should have ¢(w) = —¢(—w). The properly correlated
stochastic process is then generated by

z(t) = / (21—:: exp(—iwt +ig(w))y/ C(w) . (7.151)

This type of the random process is defined by the correlation function: if C(w) is
an even function of the frequency, the real z(t) process is generated. However, that
is not necessary. As is shown in the previous section, the realistic quantum thermal
harmonic oscillator is described by a correlation function which is neither odd nor
even. The stochastic process representing such behavior is essentially a complex
one. However, the complex stochastic trajectory is still fully defined using (7.151).
Substituting (7.139) into (7.151), we get the realistic stochastic trajectories. For the
model spectral densities

()]

Cl(w) = pryanwe]

(7.152)

and

b 1 B 1
G (w) = -1+ (@tiity? (7.153)
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Re z(t) Im 2(t)
UV\[UWUUWU i AR
X Re 2(t) Tm z(t)

(@)

Figure 7.4 Modeled stochastic trajectories based on spectral densities (7.153) (a) and (7.152)
(b) at temperature kT = +/10y. The real part (solid lines) and the imaginary part (dashed
lines) are shown separately.

we get the fluctuating trajectories as shown in Figure 7.4. We thus find that the
imaginary part in both cases is much smaller than the real part, which signifies fi-
nite temperature, but quantum effects may still be significant. Second, the spectral
density of (7.152) describes the stochastic process without clearly visible oscilla-
tions, which is similar to the overdamped Brownian oscillator (Wiener process).
Opposite to that, the spectral density, (7.153), which is a peaked function, shows
perturbed oscillations, and thus signifies the presence of oscillatory dynamics. In
both cases, however, the dynamics is chaotic.
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8
An Oscillator Coupled to a Harmonic Bath

In the previous chapter we reviewed the basic properties of three types of systems
and applied the results to the harmonic oscillator. The harmonic oscillator systems
are the basic models used for a thermal bath — a reservoir at constant temperature.
In this chapter we will describe the nonequilibrium properties of the oscillator
systems.

8.1
Dissipative Oscillator

Let us now describe a general form of quantum oscillator, characterized by coordi-
nate Q and momentum P. This oscillator is our system of interest. The potential
energy function is U(Q). Let us assume that U(Q) has a minimum at Q = 0. This
oscillator weakly interacts with the set of harmonic oscillators, which determine
the thermal bath. This part of the system is not of interest — it is not observed —and
we thus study the observable system as it interacts with the bath.

The Hamiltonian of such a system is given by

2 52 2
-ty U<®+Z(2p7"k+ m’;‘“k&g) + Hsp(Q, {%)) - (8.1)
k

2M

Here the first two terms denote the kinetic and potential energies of the observable
oscillator described by the momentum P and the coordinate Q operators. The fol-
lowing sum represents the set of harmonic oscillators composing the bath. Their
momenta are py and the coordinates are X;. m; and wy, are the mass and frequen-
cy, respectively. The coupling of the system with the bath is assumed to be linear:

Hep(Q, (%)) = — ) cr O . (8.2)
k

The sign in front of the sum is taken as negative for convenience.
In terms of these definitions we get the quadratic form of the parameter x; in
the Hamiltonian. We can thus combine the system-bath coupling term with the
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8 An Oscillator Coupled to a Harmonic Bath

potential energy term of the bath oscillator. Let us write

NN R
2 2 A2
mpoy . meoy [ . ckQ c Q
E22— Q% = o - - = (8.3)
2 2 mpwi 2mpwy,
The last term is the system operator and thus can be merged into the bath potential.
As a result, we get

7 = V(9. (8.4)

The coupling with the bath thus shifts the potential surface; however, as we have
formulated the problem for an arbitrary potential, we can take V(Q) as the start-
ing potential for the problem. So for convenience the Hamiltonian is redefined by
using

5 2
=X Q)—i—Z ka m"wk (92— . ) . (8.5)

mkwk

This model is usually referred to as the Caldeira—Leggett model [41, 42].
This system now has one advantage compared with the original problem. The
global minimum of the bath oscillators can be determined from the condition

d
—H=0, 8.6
axk ( )
which gives m;, wix,ﬁo) = 0. So we have the potential minimum at zero and this

does not depend on the coordinate of the oscillator, which was present in the orig-
inal Hamiltonian. Thus, under equilibrium conditions if the coordinate of the ob-
servable oscillator is characterized by zero mean, the mean of the bath oscillators
is then not affected.

8.2
Motion of the Classical Oscillator
In the case when all oscillators are classical, all operators in (8.5) are regular coordi-

nates and momenta. The equations of motion follow from the Hamilton principle
and give essentially the set of Newton equations:

= chxk , (87)
k

me¥ + meoixg = Q. (8.8)

MQ+ Q)+Z

mka)

We thus get the set of coupled equations where on the left-hand side we have the
independent systems and on the right-hand side we have the driving force coming
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from the interaction. We can solve this system starting with (8.8) and using the
frequency-domain Green’s function method (see Appendix A.7). The solution of
the homogeneous (h) part defined by the kinetic equation

mE™ + mpwix® =0 (8.9)

for initial conditions x(0) = x,io) and py(0) = p,(co) is given by

0
k

h)(t) = xlio) cos(a)kt) + Wiwk

(
X

sin(wgt) . (8.10)

For the inhomogeneous (i) part we take the solution via the Green’s function:

x(t) = ck/ Gi(t — 1)Q(r)d7 . (8.11)
0

We have used that Gi(t < 0) = 0 and Q(t < 0) = 0. The latter condition effectively
turns off the system-bath coupling for negative times. This may seem artificial;
however, when the bath performs stochastic fluctuations as described in the pre-
vious chapter the effects of the initial condition die out in a finite time. Thus, the
expression for the Green’s function holds for times longer than the bath correlation
time. The Green’s function satisfies the equation

my Gi(t) + mpo? Gi(t) = O(t), (8.12)

which can be solved by using the Fourier transformation (see Appendix A.5). The
Green’s function is given by

- 1 1
Gi(w) = — lim —————— (8.13)
mi 1—0 w2 — wi +ioy
and in the time domain we have

Gi(t) = 0 (1) si t). 8.14

() = 0 (B sin(wy ) (814
For (8.8) in the frequency space we get a simple solution:
xp(w) = cx G (w) Q(w) . (8.15)

The full solution for the bath oscillator coordinate is then obtained using the
Cauchy contour integration technique, which gives

0)

o k sin(wyt)
k

X (t) = %, cos(wyt) +

t

/sin(wk(t — 7)) Q(r)dr . (8.16)

0

mr i
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8 An Oscillator Coupled to a Harmonic Bath

This expression shows that in fact not only the bath affects the system, but also that
the system drives the bath through the last term. We now insert (8.16) into (8.7) and
change the time integral as

t

/sin(wk(t —17))Q(r)dr
0
1 f
= — | Q(t) — Q(0) cos(wt) —/ Q(7) cos(w(t — 7)dr) | . (8.17)

Wi
0

We then obtain the Langevin equation for an oscillator of the form

t
.. . 0
M+ M/dw(t— 00 +55V(Q) = £ - My()QO), (.19
0
where we have the time-dependent friction function
t—lz Ci cos(wyt 8.19
7= 55 2 5 o7 stont) (8.19)

and the fluctuating force

0

g(t) = Z Cr |:x1£0) cos(wit) + sin(a)kt):| . (8.20)
k

k
mr iy
These are properties of the bath fluctuations. We see that there is an initial condi-
tion on the right-hand side of (8.18). However, it should be “forgotten” if y (t) — 0
for long times.

Considering that x;, = 0 and Q = 0 correspond to the global potential mini-
mum, the equilibrium dynamics should be characterized by (x;) = 0 and (Q) = 0.
We can then assume that the bath in equilibrium at temperature T has the canon-
ical distribution as described in Section 7.5. On that basis we can define the initial
condition x,io) and p,(co) of bath oscillators. The classical canonical density matrix is
given by

1 1 i 2.2
Wy = — exp (—mZ(M—k +molxl ]| . (8.21)

k

Here Z(9 is the classical partition function. It is given by

c 1 P
7z — l:[/dxk/dpk exp (—m Xk: (m—k + mka)ixlg)) . (8.22)

All bath oscillators are independent; thus, the partition function is a product of
partition functions of separate oscillators. The integrals in the partition function
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are all Gaussian integrals and can be easily calculated. We then get
Z© = 2nkgT ]_[ w—k (8.23)

The fluctuating force can now be described by its moments. The first moment —
the average value — is equal to zero,

(€) =0, (8.24)

and its correlation function is given by

Cee(t) = (E(H)E(0)) = kg T Z — cos(wyt) . (8.25)

Checking (8.19), we can write the classical fluctuation—dissipation theorem:
Cre(t) = Mkg Ty (t) . (8.26)

Comparing (8.25) with (7.134), we find that

Cee(t) Z k. (8.27)

Thus, as should be expected, the fluctuating force, which originates from classical
oscillators, shows the same correlation function as the harmonic oscillator itself.
The effect of fluctuations on the system is twofold. First, fluctuations are created
due to {(t). The fluctuations constitute input of thermal energy into the system.
Second, the bath introduces dissipation due to y (t). This effect causes energy out-
put. When both effects are in place, the system can reach thermal equilibrium with
its environment. We thus find that all properties of the bath contract into the single
correlation function Ce(t).

The realistic surroundings of a system contain infinitely many degrees of free-
dom. Thus, the number of oscillators representing the bath should approach infin-
ity. Let us consider the definition of the damping parameter y (t) as given by (8.19).
We can write it in the form

-1 7d—w J(@) cos(wt) (8.28)
M) 2xn ’ '
0
where
°
J(w) = Ek: ] O(w — wy) (8.29)

is the classical spectral density of the bath. It describes how many oscillators are
in a specific frequency interval. As the total number of oscillators increases, the
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8 An Oscillator Coupled to a Harmonic Bath

number of oscillators in the frequency interval should increase, and we have to
switch to a continuous density function.

This spectral density is a positively defined function. In a specific problem it can
now be defined as a model function. The simplest model of fluctuations is

J(w) = 2T . (8.30)
Then
r
HOESVEIOR (8.31)

From the fluctuation—dissipation relation we can write the correlation function
Cre(t) = TkyTO(t), (8.32)
and finally we have the Langevin equation:

.. . 1 0 1
Q-i—rQ(r)—i-——V(Q):MC(t). (8.33)

M 30
This is an equation of a damped harmonic oscillator, driven by a fluctuating force.
The stochastic process §(t) can be generated as described in Section 7.9.

8.3
Quantum Bath

In the previous section we showed that all properties of the bath which affect the
system are contained in a single fluctuation correlation function. We can now in-
troduce the quantum bath using these insights.

The damping process of the Langevin equation thus does not vanish at zero tem-
perature. However, since the coordinate is essentially a real parameter, we find
inconsistency of the classical Langevin equation due to the imaginary part of the
damping parameter. This shows that the classical Langevin equation cannot ac-
count for the quantum bath. The quantum Langevin equation is obtained using
the Heisenberg equation of motion for the coordinate operator in the Heisenberg
representation. We use

[R", p] = nink" ! (8.34)
and

(6", ] = —nihp"~" (8.35)
and we define

[V(&), p] = ihV/(R) . (8.36)
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Then from the Heisenberg equation of motion

ai_s
dt &

[H, A] (8.37)

for the Caldeira—Leggett Hamiltonian, (8.5), we obtain the equations for operators

% N ¢z .
MO+ V(Q+) . —50=> ak, (8.38)
PR k
mko.ék + mkwifck = CkQ. (8.39)

These equations are equivalent to the set of (8.7) and (8.8) and, thus the solution is
equivalent to (8.16), which gives the quantum Langevin equation:

MO+ M/dry(t — ) 0(1) + V/(Q) = £() — My (10(0). (8.40)
0

Now the time-dependent friction is a number as in (8.19), but the fluctuating force
has the form given in (8.20) and is an operator of the bath variables.

To describe the force we have to use the quantum statistical physics description
given in Section 7.8, where the full correlation function was calculated. The full
quantum correlation function of a harmonic oscillator is given by (7.131). Inserting
it into (8.27), we have the quantum form of the correlation function:

2

Cee(t) = Z ‘it |:cos(a)kt) coth (ﬁhzwk) —isin(wkt)} . (8.41)

2mpw
. KWk

It has a symmetric (real) part with respect to time and an antisymmetric (imagi-
nary) part. The symmetric part

2

cos(wyt) coth (%) (8.42)

(Cee(t) + Cee(-1) =Y

k

N =

kaa)k

depends on temperature, while the antisymmetric part, which reflects quantum
fluctuations, is temperature independent:

2
cih

kaa)k

1
S(Cee(t) = Cee(—1) = = sin(wy 1) . (8.43)
k

Comparing these expressions with the damping function defined in (8.19), we find
that the symmetric part has the same symmetry as the damping function, that is,
y(—t) = y(t). At high temperature these results should turn into the classical
result given by

1
7 (Cee() + Cee(=t)lnr > ks Ty (1) - (8.44)
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8 An Oscillator Coupled to a Harmonic Bath

As we showed in Section 7.8, the Fourier transform of the full quantum cor-
relation function allows us to define the spectral density. In light of the present
problem we have the odd part of the Fourier transform of the correlation function
as

Cle(w) = nzc’z‘—h[é(w—wk)—é(w—l—wk)] (8.45)

34 T 2 mirig ' '
This function can be used as a spectral density extended to negative frequencies. As
the classical form of the spectral density in (8.29) is one sided, we have the relation

Cli(w) = hon J(o) (8.46)
when w > 0, while at negative frequencies
Cle(w) =hon](-w), o <0. (8.47)

All relaxation properties are now described by the spectral density. The force fluc-
tuation correlation function, coming from the quantum bath, is given by (7.140).
The symmetric part is then

1 d
E(C@;(t) + Cee(—t) = / %Cé’;(w)cos(wt)coth (ﬁTw) (8.48)

and the classical fluctuation—dissipation theorem then turns into

d C//
y(b) :/%% cos(wt) . (8.49)

That relation is one of the forms of the quantum fluctuation—dissipation theorem.
The spectral density or the correlation function is thus the main property of the
fluctuating environment. In practice the spectral density for the realistic environ-
ment (it contains infinite number of harmonic oscillators) is a continuous function
and various models for spectral densities are used.

8.4
Quantum Harmonic Oscillator and the Bath: Density Matrix Description

In the previous section we obtained the quantum Langevin equation for the co-
ordinate operator. In this section we consider the density matrix of a quantum
harmonic oscillator coupled to a bath of harmonic oscillators. This consideration
can be connected with the Langevin equation derived in the previous section in the
high-temperature limit.

To start, for convenience let us assume we have the harmonic oscillator model
and disregard the Q? term in the Caldeira-Leggett Hamiltonian. The Hamiltonian
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can then be written in the following form:

A 1 my
H:hs(d'&+§)+zk:|:2pmk + zquf*I-kak '-I-ai|. (8.50)
Here we replaced the operators Q and P by the creation and annihilation operators
4" and a. The density matrix of the total system plus bath supersystem in the basis
of observable eigenstates of the system can be written as W, ;, where a and b
represent the states of the system. W is still an operator for the bath coordinates.
The Liouville equation for this density matrix gives

aw, 2 3
dta’b = —i(a—b)eW,, —iLg W,

—i)_ fik (ﬁ\%—l,b +Va+1 Wa+1,b)
k

+i30 fi (VB + 1 Waptr + VEWapo) % (8.51)
k

Here we introduced the superoperator notation

A2 2
s pk mkwk ~2 A

k

We can now reduce the time dependence by switching to the interaction picture:

A

Was(t) = exp(—i(a — b)et) exp(—iHgt) g 5 (t) exp(iHgt) , (8.53)

which for the density matrix gives
dwab
= —12 NEAD) aexp(lst)wa 1,b()
—12 fe&e(t)Va + 1exp(—iet)Wot14(t)

+ iZ Fiv'b + Lexp(iet) i, 1 (t) % (t)

k

+1Y " fuv/bexp(—iet)iyp1(t)Zi(t) , (8.54)
k

where we denote
exp(i Hpt) %y exp(—iHgt) = & (t) (8.55)

as the interaction representation of the bath coordinate. It evolves with respect
to the bath Hamiltonian. We can now formally integrate the resulting Liouville
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equation

ﬁ}a,b(t) = wa,b(o)

—iZ fk/d'“??k(f)\/aeXp(iST)ﬁ/a_Lb(‘[)
k 0

—i)_ fe / dt&(7)Va + 1exp(—iet)wot1,(7)
k 0

+ iZ fr / dzv/'b + 1exp(iet) Wy pt1(7) e (1)
k 0

+iy fi / dzv/b exp(—ieT) by p—1(7) % (7)., (8.56)
k 0

and insert the result into the right-hand side of (8.54). This yields a somewhat
complicated expression which can be considerably simplified. We first disregard
the first powers of % (t) as they perform stochastic fluctuations with zero mean,
and we also disregard nonresonant terms of the form

/dr exp(ie(t + 7))A(t, 1) = 0 (8.57)
0

as A(t, t) are slowly varying functions. This approach is denoted the rotating-wave
approximation. Finally we obtain

dib, (1) ‘
¥ :;ﬁ/d’
0

— 0 (@ (1) % (1) (1) = V(@ D)5+ )&e(T)bat1041(7) % ()
— T (@ + 1) ()R (7)1 () — VbR (1)Damr -1 (D) (1))
1 emiet=) (\/m&k(t)ﬁ)a+l>b+l(f)9%k(f) - bﬁ’a,b(f)’%k(":);ck(t))
€07 (Va4 () humrss (1) — (b + Db (D)0
(8.58)

This is now a convenient form to perform averaging over the bath variables. First,
the averaging over the bath of the density matrix yields the reduced density matrix
of the oscillator:

Pa(t) = trp(Wap(2)) - (8.59)
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Next, we assume that the bath is in the canonical equilibrium form for all times, so

Wab(t) = Pab(t)ps , (8.60)

and this allows us to introduce the bath correlation function

=Y fE(R()Re(T)pn) - (8.61)
k

For the reduced density matrix we then obtain a non-Markovian master equation
which describes the relaxation properties:

t
d
apab(t) - /dT

_eis(t 7) (ac(t_.[ pab mc t— T pa—|—1b+1( ))
_ e—ielt—0) ((a + 1)C(t — 1) pap(t) — VabC(t — T)pa—1,p—1(T ))

+ e (Va1 (b + DC* (2 = D)putrp1(1) = BC*(t = T)pun(r))

0 (VabC* (¢ = D)pa1pa(1) — (b + 1) C*(E— T)pun(®))
(8.62)

This may seem to be a very complicated expression, but in fact it has a simple form.
Various terms on the right-hand side denote specific physical phenomena, such as
the transfer of energy between levels and coherence transfer. It also shows that
the populations are in fact independent of coherences. This is the consequence of
constant splitting between the nearest-neighbor energy levels.

We obtained this expression specifically for the harmonic oscillator. In coming
chapters we will develop a general formalism for an arbitrary quantum system with
countable energy levels.

When the interaction between the system and bath oscillators is weak, the time
evolution of the density matrix in the interaction representation is slow (it is con-
stant as the interaction is switched off). In this limit we can use the Markov ap-
proximation. Let us consider the relaxation of populations. From (8.62) we have a
master equation

%paa = [—ak1 +(a+ 1)721] Paa + (8 + Dk1patrat1+ Gk1pa—1,0-1
(8.63)
where the population rates
ky=k_ + k* (8.64)
and
ki= ke + k7. (8.65)
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Here
t
ko = / dre*t=IC(t — 1) (8.66)
0
and
t
kg = /dre_i‘”(‘_’) Ct—r1). (8.67)
0

The equation for coherences is also very simple:

d
Per =~ [ak— + bk* + (a + 1)k + (b + 1)k ] pas

+ V(@ + Db + D + k-)patipt
+ Vab(ky + k¥ )po1-1 - (8.68)

We thus find that the whole relaxation process is characterized by two complex
quantities k4 and k_. The first row now describes the decay of the coherence, the
second and the third rows characterize the transfer of coherences. These nontrivial
effects are only possible for the harmonic oscillator within the range of the approx-
imations used.

However, the bath properties can be reduced to a single quantity. Consider the
integral of k_ and let us change the integration variables ¢t — 7 = t; so that we get
the integral

t
ke = / dtiel*" C(ty) . (8.69)
0

As the correlation function decays with time and if we disregard the initial short-
time region, we can take the upper limit ¢ to infinity. It is convenient then to intro-
duce an auxiliary spectral function

M(w) = f dtel®* C(t) (8.70)
0

and write the correlation function in terms of the spectral density using (7.140):

C(t) = / i—:C”(w) |:cos(a)t) coth (,3760) - isin(wt)i| . (8.71)
The real part of the function M
Re M(¢) = %C”(s) |:coth (%) + 1] (8.72)
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provides the population relaxation rates. We then get in (8.64) and (8.65)

Be
e
ki = 2C"(e)— . (8.73)
e% —e_%
and
e_%
kl = ZCH(S)ﬁ . (874)
ez —e 2

The spectral density of the bath is now the only necessary function of the bath, and
characterizes all relaxation properties. From the rate expressions given by (8.73)
and (8.74), we can write the relation

ky = Pk . (8.75)

This condition thus guarantees the proper Boltzmann equilibrium distribution of
the occupation numbers.

The imaginary part of the function M(w) denotes the Lamb shifts of energy lev-
els, which become important for density matrix coherences. However, this part of
the function has no analytical expression for an arbitrary spectral density and has
to be calculated numerically, unless the spectral density has a simple form.

8.5
Diagonal Fluctuations

The quantum harmonic oscillator described by Hamiltonian (8.50) shows popula-
tion and coherence relaxation. However, the interaction term in the Hamiltonian
describes only the off-diagonal fluctuations due to the first powers of 4 and a7. In
this section we briefly repeat the derivation, but instead of off-diagonal fluctuations,
we consider the diagonal or energy fluctuations. The Hamiltonian is then given by

R 1 pi mewt
H=nh f - |+ E
s(a a+ 2) (

k m + Txk + fkﬁ’ekdi‘a) . (8.76)

Following the same procedure, we obtain the Liouville equation for the total density
in the Schrédinger picture:

dw, : ;
dta'b =—i(a—b)e W, —iLg Wy

i) fika W, +1) ) fibWapii . (8.77)
k k

Using the interaction representation, (8.53), we obtain

dwg'z’(t) - —iXk: fr ke (t)atba b (t) +12k: Fibap(t)Ze(t) .
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After the same procedure as in the previous section, we obtain the second-order
expression

dﬁ’g’tbm - Xk:ﬁ/dz [—aaiy(t) 2 (v)Wap(T) + abRy(£)ibe (1) % (7)]
0

—kaz/dr [—ab&i(t)Wap(T) Xk (t) + bbibg p(7) Xk (T) Rk (t)] -
k 0
(8.78)

Now the averaging over the bath can be performed, which yields

dpah(t)
dt

= _/dr [a(a — b)C(t — 7) — b(a — b)C*(t — 7)] pab(7) -
0

Let us now separate the correlation function into its real and imaginary parts:
C(t) = C/(t) +iC"(t). (8.79)

Using (7.140), we have

C’'(t) =f§—:€”(a))cos(wt)coth ('6760) , (8.80)

c’(t) = —/ czl—:C”(a))sin(a)t) . (8.81)
We then get

dp:l‘;(t) = —/dr [(a—Db)>C'(t — 1) +i(a® — b*)C”(t — )] pas(7) -

0

We thus find that the diagonal fluctuations affect only coherences of the density
matrix, that is, if = b, the right-hand side of the Liouville equation is zero. In the
Markovian limit we have the solution

Pab(t) — e—(a—b)zyt+i(a2_b2);71pab(0) , (882)
where
o0
y = / drC'(7), (8.83)
0
o0
n=- f drC” (1) . (8.84)
0
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8.6 Fluctuations of a Displaced Oscillator

We thus find that the decay rate y and the frequency shift # are both related to the
function M(w), (8.70); however, this spectral density may not be the same as that
of the off-diagonal fluctuations. In a general case we may have one set of oscillators
coupled to one type of phenomenon, and other oscillators coupled to the other type
of phenomenon. We then have a set of spectral densities that control the relaxation
dynamics.

8.6
Fluctuations of a Displaced Oscillator

In the previous sections we considered simple model systems. In this section we
describe a more realistic case of a molecule coupled to the vibrational bath and
describe some practical models of the spectral density. A molecule at equilibrium
is in the electronic ground state. Absorption or emission of a photon transfers the
molecule from one electronic state to another. As the molecule also has vibrational
modes, during the optical process the (slow) nuclear degrees of freedom remain
frozen and the molecular nuclear configuration becomes nonequilibrium with re-
spect to the new electronic state. That is the Franck—-Condon transition. The com-
mon assumption is that the nuclear potential energy is parabolic in the vicinity of
the equilibrium. So for two electronic states — the ground state and the excited state
— we obtain a displaced (harmonic) oscillator model.

The energy diagram of the potential energy of such a system is depicted in Fig-
ure 8.1. In one dimension the electronic potential of the ground state is Vy(q) =
hwoq?/2, and the displaced electronic excited state is described by potential V,(q) =
Weg + hwo(q — d)?/2 . Here wy is the vibrational frequency, w,, is the energy
gap, and d is a dimensionless displacement parameter. The Huang-Rhys factor
s = 1/2d? characterizes the strength of the electron-phonon coupling.

Vibrational dynamics in the harmonic potentials is exactly described by the the-
ory of the quantum harmonic oscillator. It gives an infinite set of wavefunctions
Y, with quantum numbers m = 1,...,00 and corresponding energies E, =
hwo(m + 1/2) with respect to the bottom of the corresponding potential surface.
Transitions between the ladder of the electronic ground state and the ladder of the

4

Energy

\

Coordinate

Figure 8.1 Energy levels of a two-state molecule — the displaced oscillator model.
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8 An Oscillator Coupled to a Harmonic Bath

electronic excited state determine the vibronic progression in the absorption spec-
trum. The intensity of each vibronic peak is scaled by the overlap of vibrational
wavefunctions in the ground-state and excited-state potentials.

This description considers the electronic and vibrational system as a closed sys-
tem. However, the nuclear degrees of freedom face damping due to the interaction
with the rest of the vibrational degrees of freedom — the bath. A more general mod-
el of the electronic two-level system coupled to a phonon bath captures both the
vibrational-type ladder of the energy spectrum and the homogeneous broadening
at the same level of sophistication. Additionally, other vibrational degrees of free-
dom can be simply included. These can represent various types of vibrations.

The total Hamiltonian of such a system is given by

A = 0lg){g] + (weg + Ale)(el = Y hay /54 (8], + aa) [e) (el

W far. 1
+Y hoy! (a('zaa + E) : (8.85)

Here the ground state is the reference state with energy 0, the excited state is shifted
by the reorganization energy 4 = > _, ha)f)a)sa, and the bath is represented by a set
of harmonic oscillators in terms of creation and annihilation operators. This form
of system-bath coupling introduces fluctuations into the energy of the electronic
excited state as described in the previous section. Therefore, we cannot now have
population relaxation between the excited state and the bath. The only relaxation
is inside the excited state or the ground state. This is essentially the vibrational
relaxation.

The most convenient form to describe nuclear fluctuations is the correlation
function of equilibrium system-bath fluctuations at constant temperature:

C(r) = Trp {Qe(t)Qe(O)peq} . (8.86)

Here

) [ at a 1
Peq = 71 exp (—Zﬁhwg ) (a;’zaa + E)) (8.87)
is the thermally equilibrated density operator (8~ = kg T), and
Oe(t) = Y_hog sq (a%(1) + da(t)) (8.88)

is the fluctuating collective coordinate in the Heisenberg representation. Averaging
in (8.86) gives

a 2 h a ..
C(t) = Z (ha)g )) Sq (coth b za) oS Wt —isin a)at) , (8.89)

which is a form of the two-point correlation function of the bath described in Sec-
tion 7.8. From Section 7.8 we can calculate the spectral density using the correlation
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function. From (7.140) we have
C’w) = —/dt sinIm C(¢) . (8.90)

Let us now discuss the types of correlation functions (or spectral densities) most
relevant to such molecular systems. Assuming that the system is coupled to a con-
tinuous distribution of bath frequencies, we can obtain the integral form of (8.89)
for a predefined coupling strength distribution s(w)dw <« s,. Then the spectral
density is given by

C"(w) = a(ho)’(s(w) — s(—w)) . (8.91)

When we have a dominant mode frequency g, while the mode is damped, the
vibrational frequency distribution may be modeled using a Gaussian coupling:

L -5t 8.92
sg(w) = e .
This yields
h
C(t) a)(z)e_%‘/th (coth P 2600 cos ot —isin wot) (8.93)

and the spectral density

/Tt _ (0—wq)? _ (0+awg)*
|:e v - c v :| ’
Y2

where A and u are the added scaling prefactors of the energy dimension ensuring
the right units for the spectral density. Also, the expression for x4 can be chosen so
that 4 is equal to the reorganization energy 1! [ dw/w C” (w).

Another model of Lorentzian-type coupling

Cl(w) = Au (8.94)

1 1
su@) = 7 (0 — wo)? + (2In2) 2 (8.93)

yields the correlation function

h
C(t) x we™* (coth b 2600 cos wot —isin a)ot) (8.96)
and the spectral density
/ 4owwoy
C"w) = Au- (8.97)

(02— w3 —y?)" + 4022

Equation (8.97) is the most general form of the spectral density. It includes both
the damping parameter y and the vibrational frequency w,. By taking various lim-
its with respect to these parameters, we can obtain different damping regimes
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8 An Oscillator Coupled to a Harmonic Bath

representing different baths. Undamped, damped, and overdamped regimes are dis-
cussed in the following.

For the motion of the undamped system (y = 0) the spectral density function is
obtained as a Fourier transform of a single nondecaying term of (8.89). It results
in the spectral density which couples the system to a single mode of vibrations via
the ¢ function:

Cl(w) = msw§ [6(w — wo) — O(w + wo)] - (8.98)

u

The reorganization energy of such spectral density is sw.

However, the spectral density given by the 0 functions is not realistic because in
solutions any vibrational motion experiences dissipation. In that case the correla-
tion function decays over time and the spectral density becomes a smooth function.
Such a damped regime corresponds to the limit of the system being neither unaf-
fected nor overdamped by the bath motion. This limit is achieved by taking y < wq
in (8.97) and redefining the damping strength y — 2712y,

‘dwwly

Cl(w) = . (8.99)
U (-0l e

Here A is the reorganization energy. This type of spectral density has a peak at
o; however, the peak width is defined by the damping strength y, differently
from (8.98), where the peak is the 6 function (Figure 16.5a).

The overdamped bath regime is usually represented by the spectral density of a
Brownian oscillator, which is derived semiclassically. In that case the classical corre-
lation function of an overdamped oscillator is assumed (see Section 3.8):

Ca(t) = 2Akg T exp(—y |t]) . (8.100)
Its Fourier transform is given by

Ly

Cd((j)) = 4kB Tm .

(8.101)

As expected, the function is real, so the spectral density cannot be defined from
the relation given by (8.90). Instead we can use general relation (7.138). Note that
in the high-temperature limit the classical correlation function coincides with the
quantum correlation function. We must then have that

C’(B)lur = Ca(t) (8.102)
or

C'()ur = Ca(w) . (8.103)
From relation (7.138), we then have

¢(w) = ()22 = cy)2

— = 8.104
5 5 (8-104)
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and we then get the well-known spectral density of an overdamped Brownian par-
ticle

Yy w

c” ,
w?2 + ),2

osc(®) =24 (8.105)
with reorganization energy A and relaxation rate y. The full quantum correlation
function in the frequency domain is later constructed by the direct application of

the fluctuation—dissipation relation:

Yo Bo
Co-sC(CU) = z;l.m |:1 + coth (T)i| . (8106)
The bath described by such spectral density is denoted as the overdamped semiclas-
sical bath.

Alternatively, the overdamped bath can also be described by assuming the most
general form of the spectral density. Taking (8.97) at the limit y > wg, we obtain

4wy’

C(;'/q(w) - (a)Z + )/2)2 :

(8.107)
We denote this regime as quantum overdamped since it is introduced from the
quantum definition of the correlation function rather than derived from classical
assumptions. The reorganization energies are equal to 4 for both types of over-
damped spectral density. The semiclassical spectral density function is equal to 4
at its maximum at w = y, while the quantum function has its maximum at
w = +/3/3y ~ 0.58y and the maximum value C(;_’q(\/g/Sy) =34/3/42 ~ 1.3A.
In Figure 8.2 we show how the spectral density of the damped quantum har-
monic oscillator is interpolated from the undamped to the overdamped case. The
undamped model y — 0 shows a well-resolved resonance at ® = wo = 1, while
the overdamped model y > w, = 1 shows a steep rise at low frequencies and

later decays as » 3.

Figure 8.2 Spectral densities of a vibronic bath based on the damped Brownian oscillator. These
functions follow (8.99) (multiplied by y) with parameters 41 = 1and wo = 1 for various values
of the damping parameter y.
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8 An Oscillator Coupled to a Harmonic Bath

In practice the molecules are usually coupled to several vibrational modes and
a spectral density may be described by a multipeak function. For the model with
several modes, the spectral density is then composed of several contributions:

C"(w) = C/(w) + Clhi(w) . (8.108)

Here the overdamped mode C!’(w) corresponds to the fast overdamped (semiclas-
sical C/y (w) or quantum C; (w)) bath and is responsible for the homogeneous
broadening. The second term, C//, (w), represents the spectral density of molecular
vibrations (undamped C/(w) or damped C](w)) . This composition of the system—
bath correlation is the commonly used approach in simulations of the spectroscop-

ic results and is discussed in detail in the literature [43, 44].
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Projection Operator Approach to Open Quantum Systems

In previous chapters we introduced the wavefunction and the density operator de-
scriptions of quantum mechanical systems. They were first presented as equivalent
alternatives in Chapter 4. Later in the same chapter, we recognized the flexibility of
the density operator formalism, and we introduced the concept of mixed states and
the concept of the reduced density operator. In Chapter 6 we examined the conse-
quences of the quantum mechanical formalism for large systems. We introduced
the concept of decoherence, which explains the emergence of the classical world
from the quantum mechanical description. We are often dealing with systems with
a small number of degrees of freedom, which interact with a large environment
poorly characterized due to our limited knowledge of their state. Although we have
been formally assigning wavefunctions to these environmental states, often the
only information we were really using was that the overlap of the environmental
wavefunctions corresponding to different states of the subsystem tends to zero. In
other words, we have seen the coherence between different states of the subsystem
dephase. We were thus interested in the dynamics of a small quantum mechanical
subsystem embedded in some large environment. The total system (the subsys-
tem and the environment) was itself described by a single wavefunction and it can
therefore be said to be closed, because no interaction with the outside is taken into
account. The small subsystem, on the other hand, exhibits the properties of an open
system, because it exchanges energy and sometimes even matter with the external
environment. The environment can thus be described by the concepts of statisti-
cal physics (Chapter 7). Here, the concept of the reduced density operator finds its
most important application. We have already encountered the reduced density ma-
trix in Chapter 8. Instead of following the precise time evolution of a wavefunction
of a large closed quantum system, we are able to develop a reduced description
of the subsystem evolution only, with some effective description of the rest of the
environment and its influence on the subsystem dynamics.

The situation where we observe a microscopic subsystem on a macroscopic level
is very common. Most spectroscopic measurements are done on molecules dis-
solved in a solution, or they are done on some specific (e.g., electronic) degrees of
freedom that are embedded in a sea of other degrees of freedom (e.g., nuclear). The
information that we extract from such experiments is specific to the microscopic
subsystems, yet it depends on the unknown state of the large number of degrees

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
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9 Projection Operator Approach to Open Quantum Systems

of freedom that our experiment sees only indirectly. These degrees of freedom are
often termed irrelevant as opposed to those of the subsystem that we are interested
in, which are termed relevant. Because the irrelevant degrees of freedom are actu-
ally quite important for the evolution of the relevant part of the system, it is often
better to speak of a (sub)system and its environment, bath, or reservoir. Because the
bath is often something macroscopic, finding itself in equilibrium corresponding
to some temperature, we often speak of the thermodynamic bath or thermodynamic
reservoir. When talking about the subsystem, we will from now on use the shorter
word system wherever it does not lead to confusion with the total closed system. In
this chapter we will discuss methods for systematic derivation of evolution equa-
tions for the reduced density operator of the relevant system.

9.1
Liouville Formalism

Let us first introduce a suitable formalism for manipulations with the density op-
erators. The equation of motion for a system described by the Hamiltonian H and
the density operator p, the Liouville-von Neumann equation, was derived in Chap-
ter 4 (4.82) and we give it again here for convenience:

d i (

a’ = "h
Represented in the selected basis |a), this equation would be an equation for a
matrix, and the right-hand side would be obtained by matrix multiplication. We

introduced the superoperator notation in (4.86). Equations (4.86) and (9.1) can be
formally rewritten in a superoperator form:

I:Ip—pI:I) . (9.1)

d

—p=—iLp. 9.2
T iLp (9-2)
The superoperator £ is usually called the Liouvillian or Liouville superoperator. In
the Dirac bra-ket formalism, we can represent it by the following scheme where £
acts on an arbitrary operator A:

LA=">"1a)(b|Lapcalc|Ald) . (9:3)

ab cd

As in the case of operators, the superoperators can be specified by listing their
matrix elements, which form tensors of rank 4.

In this chapter we introduce a shorthand summation notation — the Einstein
summation convention — where a repeated index in matrix manipulation is un-
derstood as a summation, for example, A}, By, represents ), A,p By, Thus, for
quantum mechanical operators A = Y, Agpla)(b| and B = > ap Banla)(b| and
state vector |y) = Y, ¥4|a), we have

|9) = Aly) > Aay¥ps = ¢ (9.4)
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9.1 Liouville Formalism

and
C=AB— AgBy. = Cye, (9.5)

where |¢) is a new vector obtained by the action of A on |1) and C is obtained by
the product of A and B.

The action of a superoperator, on the other hand, requires summation of two
indices. A superoperator acts on an operator as follows:

é = [/A - Z[/abchcd = »Cabchcd = Byp . (96)
cd

To see that there is close analogy between the operator—state vector formalism and
the superoperator—operator formalism, we can group the pairs of indices into one
superindex. This can be done in many equivalent ways. One can, for instance, start
with

(9.7)

to assign a unique number to all pairs of values by some rule. Relation (9.6) will
then read

LijAy= By, (9.8)

where I and | are superindices. Equation (9.8) is completely analogous to rela-
tion (9.4). In other words, by reordering the density matrix elements into a vector,
and by reordering the tensor elements of the Liouvillian into a matrix, we obtain
the equation of motion for the density matrix, (9.2), in the same matrix form as the
Schrédinger equation.

The space on which the superoperators act and which is formed by the opera-
tors is sometimes termed the Liouville space. In principle, both the Hilbert space
formulation and the Liouville space formulation are equivalent for a closed system
and they can be chosen depending on convenience. The advantage of the Liouville
space becomes apparent when turning to open systems and the reduced density
matrix.

In the Liouville space a formal solution of the Liouville-~von Neumann equation
can be given as

p(t) = exp(—iL)p(0) . 9.9)

The forward propagator, or Green’s function, G(t) = 6 (t) exp(—iLt) is analogous
to the corresponding evolution operator for the state vector in Hilbert space (see
Chapter 4). For a density operator representing a pure state |y), that is, for p =
|9) (1], the evolution superoperator G(t) can be expressed in terms of an action of
two Hilbert space evolution operators U(t) (defined in Chapter 4) as

p(t) = G(1)p(0) <= U(t)p(0) UT(t) . (9.10)
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9 Projection Operator Approach to Open Quantum Systems

Aslong as the density matrix p represents a closed quantum mechanical system, its
time evolution can be expressed equivalently by the evolution superoperator G(t)
and the evolution operator U(t). When the system is open, however, only the su-
peroperator formalism has enough flexibility to fully describe the reduced system
dynamics.

9.2
Reduced Density Matrix of Open Systems

In this section we introduce the reduced density matrix description of an open
system interacting with some environment. We denote the relevant system by the
letter S, the thermodynamic reservoir — the environment — by R, and any terms that
correspond to their interaction by SR. Thus, the total Hamiltonian of the composite
system consisting of the relevant system and its environment is given by

H = Hs + Hg + Hsz , (9.11)
and the corresponding Liouville superoperator reads
L=Ls+ Lr+ Lsr . (9.12)

The total density matrix of the composite system is denoted by W(t), and in general
it cannot be split into parts corresponding to subsystems S and R in a simple way.
When the interaction term Hgg is equal to zero, and subsystems S and R never
interacted, we can write the total density operator as a product of two density op-
erators: p(t) for the system S and w(t) for the environment R. This is our starting
density operator:

Wo(t) = p(t)w(t) . (9.13)

The density matrix reduced to subsystem S can be obtained by averaging W over
the degrees of freedom of subsystem R. The reduction of the total density operator
is achieved by applying the trace operation in the Hilbert space of subsystem R,
which in the noninteracting case leads to

trd Wo(t)} = trelp(t)w(t)} = p(t)tra{w(t)} = p(t) . (9.14)

Here we used the fact that the density operator is normalized. If the systems inter-
act, one can only define the reduced density operator formally by

p(t) = tra{ W(t)} , (9.15)

because there is no a priori density operator of the subsystem S. Subsystems S
and R are in general entangled due to interaction (see Chapter 6). If we are inter-
ested just in observables related to subsystem S, the reduced density matrix still
possesses all the necessary information.
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9.3 Projection (Super)operators

It is useful to remind ourselves of the way the trace operation would be applied
to the total density matrix operator expressed in some particular basis of the total
Hilbert space. We chose some basis of vectors |a) of the Hilbert space of the sys-
tem S (Latin indices) and some basis of vectors |a) of the environment R (Greek
indices). The total density matrix will be then represented by the rank-four matrix

Waabp(t) = (al(a| W(t)[b)| ) . (9.16)

The trace operation over the environmental degrees of freedom amounts to sum-
mation of the elements of the density matrix diagonal in Greek indices:

Pab(t) = (altre{ W()}[b) = > Wanpalt) - (9.17)

Here we reduced the density operator (represented by a matrix here) and we con-
tracted it from the total Hilbert space to the smaller Hilbert space of the system.

9.3
Projection (Super)operators

The projection operator approach (see, e.g., [40]) allows us to stay in the Hilbert
space of the total system, but it projects the total density matrix onto the degrees of
freedom of the system. For the relevant system the total density matrix is replaced
by the product of the reduced density matrix p,j(t) and some prescribed density
matrix w,g in the Hilbert space of R to represent the “unknown” bath state.

This operation (reduction and replacement W,qp5(t) — pap(t)Wep) can be ex-
pressed by the action of a certain superoperator P on W(t):

PW(t) = p(t)w . (9.18)

Expressed in the matrix elements, (9.18) is given by

Paavpaav' s Wararypr(t) = Pab(t)Wap » (9.19)
which is fulfilled by

Paabpaa't’p’ = Oaa’Opy WapOarpr - (9.20)
where

tr{w} = Z Weo = 1. (9.21)

Otherwise the operator w can be arbitrary. The superoperator P fulfills the relation

PP (9.22)
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9 Projection Operator Approach to Open Quantum Systems

which qualifies it as a projection superoperator. The superoperator P thus per-
forms a trace over the bath, producing the reduced density matrix. Then it repre-
sents the state of the bath by a predefined matrix w.

One can also always define a complementary superoperator Q as

Q=1-"P. (9.23)

It can be shown easily that Q is also a projector and that PQ = 0. In the next few
sections we will show how to use superoperators P and Q to our advantage together
with the Liouville superoperators. This will significantly simplify the derivation of
approximate equations of motion for the reduced density matrix p(t).

9.4
Nakajima—Zwanzig Identity

Our final aim is to derive a suitable equation of motion for the reduced density
operator p(t). Such a derivation can be conveniently formalized if we first try to
find the equation of motion of the density matrix P W(t), which implicitly contains
p(t) (see (9.18)). As we show below, one can derive a formal equation in a closed
form. Solving this equation is as difficult as solving the full equation for W(t), but
it can be used as a starting point for a subsequent approximative treatment.
We start with the Liouville equation for the total density matrix:

d .
o W) = —i(Ls + L + Lsg) W(t) . (9.24)
It is useful to work in the interaction picture with respect to Liouvillians £g and Ly
because this will later allow us to perform a certain perturbation expansion with
respect to Lgg only. The interaction picture is used here in full analogy with the
interaction picture explained in Section 4.4.3 for the state vector. The analogy is
complete, just the operators are replaced by superoperators and the state vectors
are replaced by density operators. Equation (9.24) in the interaction picture reads

d
I WO (t) = —iLsp(t) WO(t) . (9.25)
The projector operators P and Q introduced allow us to write the following two
coupled equations:

%P WW(t) = —iPLsg()P W (1) —iPLsr () QW (1), (9.26)
9 n i n i n
57 QW0 (1) = —1QLswr(NQW (1) —1QLwr(NP W) . (9.27)

In (9.27) we introduced the new quantity Q W()(I)(t) (an interaction picture):

t
oW\ (t) = exp_ | i / drQLsr(r)0 | oW (1) . (9.28)
to
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This transforms (9.27) into
a t
aQWO“’(t) = —iexp_ i/ d1QLsp(7)Q | QLsr(yP WO (1) . (9.29)
to

The solution of (9.29) can be easily found by integration:

ow (1) = oW, (t0)

t T
—i / drexp_ |i f dv’ QLsg(7)Q | QLsr(r)yP W (7). (9.30)
to to

After returning from the second interaction picture to Q W I)(t) by inverting (9.28),
we obtain

t
QWW(t) =exp —i/erESR(r)Q oW (ty)
to

t t—1
—i/drexp+ —i / d7’'QLsy(7')Q | QLsr(T)P W (1) .
to to
(9.31)

We next insert (9.31) into (9.26) and obtain a closed equation of motion for the
relevant part of the density matrix P W 0 (z):

d
Fria WO(t) = —iPLsr ()P WD (1)

t
—iPLsg(t) exp, —i/dTQ»CSR(T)Q Qw (1)
to

t t—1
—/dIPCSR(t)exp+ —i / dt’' QLsr(7))Q
to to

x QLsr(t)P W (7). (9.32)

This equation, called the Nakajima—Zwanzig identity, is exact. No approximations
were used in its derivation. We could have formulated it without the interaction
picture, in which case its form would be simpler (ordinary instead of time-ordered
exponentials). The Nakajima—Zwanzig identity is, however, useful mostly in ex-
panding the exponentials to a low order. This would mean that we would expand
the equations in the total Liouvillian, not just the interaction Liouvillian.
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9 Projection Operator Approach to Open Quantum Systems

We can identify three terms in (9.32): a term which seems to contain an effective
Liouvillian

Lnz(P W () = PLsg()P WD (2, (9.33)

the so-called initial correlation term
t
Inz(t) = PLsgr(t) expy | —i / drQLsk(1)Q | QW I(ty) , (9.34)
to
and a relaxation and dissipation term

t t—1
Knz(t; PWOy = /drPESR(t)exp+ —i / dv’QLsr(7)Q
to to

x QLsg(r)PW (7). (9.35)
The equation for the projected density matrix then reads

d
57 WO (t) = —iZyz(t) — iLlnz ()P WO (1) — Knz (5 P WD) . (9.36)
We will interpret these terms after we will deal with an alternative use of the pro-

jector superoperators in the section that follows .

9.5
Convolutionless Identity

The exact equation, (9.32), is an integrodifferential equation. The time derivative of
the state (the left-hand side of (9.32)) depends on the history of the system, that is,
the equation is time nonlocal. However, this dependence is not fundamental. As
we will demonstrate, it is possible to rewrite (9.32) in a time-local form.

We start with the full formal solution of the problem in the interaction represen-
tation, (9.25), that is, with

WO (t) = G(t, to) WD (1) . (9.37)

The evolution superoperator
t
G(t, to) = exp —i/er’SR(t) , (9.38)
to

which solves (9.25), can be used to convert (9.32) into an ordinary differential equa-
tion. We will start with (9.31), that is, one step before we completed the derivation
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of the Nakajima—Zwanzig identity. We express all density operators in terms of
W (1), for example, WU (z) = G(z, t) WD (t). So for (9.31) we write

t
QW) = exp —i/erESR(r’)Q 0w (t)
to

¢ t—7
_i/drexp+ —i / dt'QLsr(7)Q | QLsr(7)
to to

x PG(t,t)(Q +P) Wht). (9.39)

QW () appears on both sides of (9.39). Collecting both terms containing it, and
dividing by the factor in front of it, we obtain

t
owWi(t) = (1—2(t) "expy —i/erlZSR(r’)Q oW (tg)
to

+a=-2@) 2w, (9.40)

where the superoperator X () reads
t t—1
() = —i/drexp+ —i/dr’QCSR(r’)Q OLR(T)PG(T,t).  (9.41)
to to

The new closed-form equations for P W ¥ (t) contain only W (t) and W (t,) on
the right-hand side. They are therefore ordinary differential equations and the his-
tory term was eliminated. The final convolutionless form of the equations of mo-
tion reads

d .
5P WO(t) = —iZcr(t) — Ken ()P WO (1), (9.42)

where
t
TcL = iPLsr()(1— Z (1)) expy —i/erL‘,SR(r’)Q QwD(ty) (9.43)
to

and
Kew(t) = iPLsr()(1 — ()7 P (9.44)

So we obtained again equations of motion of the projected density operator
P W(t), this time in a convolutionless form. The term K¢ contains a contri-
bution equivalent to Lyz of (9.33), and a contribution replacing Lyz of (9.35).
Equations (9.32) and (9.42) represent two equivalent expressions for the dynamics
of the projected density operator. These types of expressions can be efficiently used
in relaxation theory, as we show in Section 11.3.
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9.6
Relation between the Projector Equations in Low-Order Perturbation Theory

Identities (9.32) and (9.42) are not practical, unless we expand their terms in low
order of Lgg. In order to simplify the following approximate treatment, we will use
a particular form of the projection superoperator, (9.18), and assume that the initial
condition for the total density matrix reads

W (to) = p(to)w . (9.45)
This choice leads to
OW(t) =0, (9.406)

and thus the terms Zyz and Z¢; containing W(ty) are eliminated from all equa-
tions. Interestingly, this type of initial equation is quite common in spectroscopy,
as we will discuss in Part Two (see Chapter 14).

Another point worth noting is the fact that we derived our identities in the inter-
action picture. We have to find the relation between the projected density operator
P W (t) and the reduced density operator p(t). Using the definition of the interac-
tion picture, we have

A

PWO(t) = Of (e { O () W(e) On(t) wOs(t) = p(tyw . (9.47)
Here we used the fact that under the trace we can perform cyclical permutation of
the operators, and correspondingly the bath evolution has no effect.

In the second order, the Nakajima—Zwanzig identity, (9.32), becomes (we omit
the initial term because of (9.46))

d .
= o0(t) = —itrndLsa ()} ()
t—to
= / drtrp{Lsr (t)QLsr(t — T)wipW(t — 7). (9.48)
0
At the same time, the second-order expansion of the convolutionless identity
leads to
9 0 i 0
2=p0(8) = —itrd Lsa()w}o()

t—to

- / drtrr{Lsr (t) QLsr(t — T)w}p(t) . (9.49)
0

Equations (9.48) and (9.49) represent two different master equations for the re-
duced density operator in the interaction picture. The only difference between (9.48)
and (9.49) is the retardation in (9.48). The convolutionless version of the equation
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can be obtained from (9.48) by an approximation which reminds us of the proce-
dure by which we derived the convolutionless identity itself. Let us postulate an
evolution superoperator Up (t) which solves (9.32) so that

p(t— 1) = Up(~T)p(1) - (9.50)

Inserting this relation into (9.48), we obtain an ordinary differential equation for
p(t). Because we want to keep the master equation in the second order of pertur-
bation theory with respect to Lsr(t), we have to approximate U/p(—1), which now
appears in the integration kernel, in zeroth order. This, however, means that we
have to assume it is identity Up(—7) ~ 1. This leads to a second-order master equa-
tion which is identical to (9.49). Thus, after the replacement p(t — 7) — p(t) in
the second-order Nakajima—Zwanzig master equation, we obtain the second-order
convolutionless master equation. This replacement is usually considered an ap-
proximation, but it certainly does not represent an approximation with respect to
the interaction Liouvillian Lgg.

The question of which of the two-second order equations, (9.48) or (9.49), is bet-
ter has to be answered on an individual basis. Practical reasons limit us to these
second-order representations, while at the same time, going to higher orders does
not necessarily bring about an improvement [45]. In some cases, the second-order
convolutionless generalized master equation can be shown to be exact [46] because
it corresponds to the so-called second cumulant expansion [26].

9.7
Projection Operator Technique with State Vectors

The projection (super)operator technique is not exclusively reserved for density op-
erator problems. We can apply it to state vector problems as well. We used the
superoperator formulation in the previous sections, and we can now apply its re-
sults to the analogous problem with the state vector. The application to state vectors
amounts to replacement of the superoperators by operators and the replacement
of density operators by state vectors. In this section we use a slightly unusual look
at open quantum systems. We will consider a multistate system, in which two lev-
els will be considered explicitly, and the rest of the states will form a “bath” with
respect to which the explicitly considered part of the system Hilbert space will be
open. Let us consider an N-level system. The two lowest levels |g) and |e) will be
the levels of interest, while the existence of a remaining band of a large (potentially
infinite) number of states | f,,) is also assumed.

We will study the feasibility of exciting state |e) by light with frequency w when
the system is initially in state |g). In the case when the transition from |g) to |e) is
dipole allowed, that is, the dipole moment operator has the form

= deglledgl + lghel) + .. . (9.51)
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the situation is simple. Let the Hamiltonian have the simple form of

H =e,le){e] +Z€fn|fn)(fn

: (9.52)

where we assume €, = 0. The state vector |1 (!)(t)) in the interaction picture with
respect to H and its expansion in terms of the basis states can be written as

lpO(®) = g (1)lg) + ct'le) + Y P ()1 fa) - (9.53)

We are interested in the excited state |e) and therefore we consider the Schrédinger
equation for the coefficient c(el)(t). Let the interaction with the external monochro-
matic electric field E(t) = £(t)e™ " + c.c. be weak so that we can set c(gl)(t) A

cg)(O) = 1. From the Schrédinger equation

3 .

ﬁlw“’(t)) =it E(t)p(t) (9-54)
we get

%cg)(t) = idgel s (1) (e + et el (t) . (9.55)

The term e'“«! was obtained from the interaction picture of the transition dipole
operator. The right-hand side of (9.55) contains terms oscillating with frequencies
. — o and o, + . The former difference becomes zero at resonance and the
corresponding term leads to a steady increase of Cg)(t). The second term oscillates
with twice the frequency at resonance. Its contribution can therefore be disregard-
ed. An effective equation for the expansion coefficient cg)(t) is therefore

L PR (0

3 (t) ~ ideg Eocg (1) - (9.56)
This corresponds to a normal absorption of light.

The situation is more complicated when the direct transition from |g) to |e) is

not allowed. Let us assume that at least some transitions from |g) to | f,;) and from
| fu) to |e) are allowed, that is,

= deg,le)(ful + D dgy,|8)( ful + hoc. (9.57)

We are still interested only in what happens in the subspace given by the projec-
tor P = |g)(g| + |e){e|, that is, the details of the system evolution concerning
states | f,,) are to be considered by some effective theory. Equation (9.54) requires
all states be known. However, applying the projector operator P to it would lead to
an effective equation projected just onto the two states we are interested in.

By analogy with the previous section, we should expect the equation of motion
for P|yO(#)) in the form of (9.42), with K (¢) and K (t) in the corresponding
operator forms:

KU (t) = iPu(t) E(t)P, (9.58)

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c09 — 2013/6/3 — page 221 — le-tex

9.7 Projection Operator Technique with State Vectors

K& (t) = iP/dt/A(t)E(t)Qﬂ(r)E(r)P. (9.59)

Because the transition dipole moment  contains | f,,) states in all terms (see (9.57))
the projection PuP and correspondingly ICg{ are equal to zero. The only term that
is able to bring the excitation to state |e) is therefore the term K(sz The projected
Schrédinger equation reads

d
5 P10 ) = K& P O) - (9-60)
We will again assume that the population of states |e) and | f,,) is negligible with

respect to the population of |g). Disregarding c(gl)(t) on the right-hand side, we
obtain

t
d U] ie. /h —ier, [R(t—
7y G (1) = —/dtZe M e g e M= g E(1)E(T)
to n

X (e—iwt + eiwt)(e—iwr + eiwr)cg)(t) . (961)

The integration can be performed, leading to

9 _ _
5Cg)(t) = —iZ(e_l(w_weg+wfng)t + el(w+weg_‘”fng)t)defn dfngg(t)g(t)

e (=)t ei(w—i—wfng)t 0
X - cg (t).

W= O fg o+ @ fug
(9.62)

Here we assumed the slowly varying envelope approximation, and we assumed that
E(to) = 0.” There are now a number of conditions under which transition to state
|e) can happen. We can identify four terms on the right-hand side of (9.62) which
have to be integrated to obtain cg)(t). The resonance conditions in the correspond-
ing four cases are as follows:

W= Wt Of g+ 0—0fe=20—-w,gx0, (9.63)
W= W+ Vfg— W —Ofe=A0—w;g~0, (9.64)
w+w5g_wfng_w+wfng=Aw_"weg%Oy (965)
O+ Weg = Ofg+ @+ 0fe=20+w,gx0. (9.66)

Here, Aw = 0 represents a possible mismatch of the two appearences of @ due
to finite width of the exciting pulses. First of all, condition (9.66) cannot be satis-
fied with positive frequencies, and it does not correspond to any physical process.

1) Integrating by parts, we obtain jlf) dr&(r)el”” = [E(1)e7 [iw]}, — jlf) dr&’(7)(e'T)/(iw). The
derivative £’(t) of the envelope £(t) is small and smooth so its integral with a fast exponential is
negligible. Considering & (tp) = 0, we get jlf) dr&(r)el” &~ £(t) (") /iw.
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9 Projection Operator Approach to Open Quantum Systems

In conditions (9.63) and (9.66), the light frequency @ does not cancel out, while
it completely cancels in conditions (9.64) and (9.65). In this latter case, we arrive
at the condition w,; = 0, which cannot be satisfied (we have no control over the
transition frequency). However, if the excitation pulse carries a spectrum of fre-
quencies with width Aw, the two occurrences of w in (9.64) and (9.65) do not have
to cancel exactly and the resonance condition can be fulfilled. We denote this by the
resonance condition Aw £ w.g; & 0. Alternatively, we could consider excitation by
two pulses with different frequencies (different by the value of Aw), which would
lead to the same resonance condition.

In (9.63) we arrived at the theory of two-photon absorption. Interestingly, although
states | f,) were instrumental in providing the channel for excitation, their tran-
sition frequencies do not appear in the resonance condition. Considering condi-
tion (9.63), we get from (9.62)

L def, dyg (I)
5 ce (1) =i (Zﬂ: — wfng) E(ME()eg () (9.67)

which corresponds to the normal linear absorption process described by (9.56) only
with the replacement £(t) — E(t)E(t) and deg — Y, (def, df,0)/(@ f,g — @). The
effective two-photon transition dipole moment,

der, d

(2) efn® fug

DYy =y —hieE (9.68)
6 ~ W fg — W

contains the transition dipole moments and transition frequencies of states | f,).

The conditions specified by (9.64) and (9.65) are even less specific when it comes
to the value of the light frequency w. They state that if the excitation pulse contains
a spread of frequencies large enough to be equal to the transition frequency w,,
state |e) can be excited. Again, the transition frequencies w f,, have no role in
the resonance condition. As in two-photon absorption, they influence the effective
transition dipole moment. The two conditions (9.64) and (9.65) correspond to the
Raman scattering process.
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10
Path Integral Technique in Dissipative Dynamics

In this chapter we make a short detour from the master-type equations describing
the relaxation problems. The path integral approach (see, e.g., [47], and also [42],
where its application to quantum dissipative systems is extensively described) is
one of the techniques which applies quantum dynamics to classical trajectories. It
can be applied in a wide variety of systems and it provides a very elegant extension
to statistical physics. In the problem of quantum dissipative dynamics the path in-
tegral technique allows an easy description of mixed quantum-—classical dissipative
systems.

10.1
General Path Integral

Consider the coordinate and momentum operators. In the general spirit of quan-
tum mechanics, the eigenstates of the position operator § can be defined using

qlq) = qlq) . (10.1)

They create the complete and orthogonal basis set in the sense (q|q’) = d(q — q),
and

/dqlq)<q| =1. (10.2)
In the same way, we introduce the momentum operator eigenstates

plp) = plp) (10.3)

with the same properties (p|p’) = d(p — p’), and

fdplple =1. (10.4)

As momentum and coordinate states are equivalent, we can use either representa-
tion for quantum problems.

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
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10 Path Integral Technique in Dissipative Dynamics

In the coordinate representation, the coordinate operator §, = ¢, and the canon-
ical commutation relation, (Chapter 4), is satisfied when p, = —i#d/dq. In the
momentum representation the result is similar, for example, p, = p, and the
canonical relation is satisfied when §, = i#0/dp. The quantity of interest is now
the scalar product of coordinate and momentum eigenstates denoted by (q|p). For
this purpose we can write the eigenequation for the momentum operator in the
coordinate representation:

Pop(@) =ro,(4), (10.5)

which describes the wavefunction ¢ ,(q) of the momentum operator with momen-
tum eigenvalue p. The normalized solution reads

1 i
Pp(q) = Wern exp (51"1) ) (10.6)

with normalization
[ davi@snia =ow-p). (10.7)

In the coordinate representation, the wavefunction of the coordinate operator is
given by

qvy(@) =davy(), (10.8)
which is satisfied by ¢, (q) = (9 — q’). Then,
1 i
= [ dqdo(q—¢ )= — - . 10.9
{qlp) / q0(q—9)9p(q) meXp(hpq) (10.9)

This is an important relation for the path integral formulation in the coordinate
representation.

Consider a particle with mass m moving in a one-dimensional space along coor-
dinate q in a potential V(g). The Hamiltonian describing this motion is

A p?
H=-—+4 V(g 10.1
V() (10.10)

where p and § are the momentum and coordinate operators. The Schrédinger
equation describes the time evolution of a state vector (see Chapter 4):

Diy) =~ Aly) (0.11)
V1= TR ’
We can now introduce the time-evolution operator

lw (1) = U®)|w(0), (10.12)

where

U(t) = exp (—% Flt) ) (10.13)
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10.1 General Path Integral
From (10.12) in the coordinate representation we write for the wavefunction
v(@.) = [ & talvlavi.o
= / dg'K(q.t:q",0)(q’,0) , (10.14)
where we denote
K(as, t: qo. to) = (qr| exp (—%ﬁ(tf— to)) 90) - (10.15)

This value denotes the amplitude of the transition from system coordinate g, at
time t, to coordinate gr at later time t¢. It is a complex value, so it cannot be associ-
ated with the probability and is denoted by a probability amplitude. The probability
is given by | K(gs, t; qo, to)|>

Due to the completeness of the coordinate representation (10.2), we can write
the composition law of propagators:

K(qz,t2|q0t0) = /dqlK(qz, t2|q1t1)K(q1,t1|q0t0) , t() < tl < tz . (1016)

This bears strong similarity with the stochastic Markovian dynamics described by
the equivalent Chapman-Kolmogorov equation for transition probabilities as in
Chapter 3. Let us divide the time interval into many equidistant N intervals as
shown in Figure 10.1:

te—to: by, =to+ne, e=(t—t)/N, (10.17)

and n = 0... N. n = 0 denotes the initial point ty, while n = N denotes the final
point t. The full propagator is then

K(qr, telqo, to) = /dQN—l"'fdfh/dfh

K(qr, telgn—1, tn—1) - K(q2, t2]q1, t1) K(q1, t1]q0, t0)  (10.18)

(notice that the initial and final positions are not integrated over), where
ia
K(an ol 1) = (ol esp 5 ) ) (1019

four intervals
three divisions

| | | q
qi I I !
1dn
|
| |
T

|
|
T
to tn ty

Figure 10.1 Construction of the path integral. The total interval is divided into N = 4 intervals
by three divisions. The coordinate is followed at each interval.

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

225

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —
Chap. 10 — 2013/6/3 — page 226 — le-tex
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is the elementary propagator over the infinitesimal interval e.
The infinitesimal propagator can be easily calculated. If we take N — oo and
€ — 0, we can expand the exponent in (10.19) as

i
K(@n, tul@n—1tn—1) = (qul1 — > He + ... |qn—1) - (10.20)

Using the properties of the Fourier integral, we obtain from the first term

(@nlgn—1) = 0(qn — qn—1) / exp( g(qn - qn_l)) : (10.21)

The second term from the Hamiltonian (10.10) reads
42

ié(qnlzp—mlqn—ﬂ 5 (anV( )qn—1) - (10.22)

1~
(qn|£H€|qn—l) = A

For the kinetic energy part we insert the full set of momentum operators and

use (10.9):

5 5’
(@l 181) = [ dpaslaal P ) pailano)

dpn—1 i pz—l
= | === —Pue1(qn — Gn—1) | =L . 10.2
f ik eXp(hp 1(4n— 4 1)) o m (10.23)

The potential energy from (10.21) gives
{4sV(@)|gn—1) = V(d1—1)0(qn — qn—1)
_/dpn—l l _ \V
= | S &P\ 7 Pr—1(dn = dn—1) | Vidn—) -

Inside the integral the sum of kinetic and potential energy terms gives

pZ
om T V@) = Hip.q), (10.24)

which is the classical Hamiltonian function (not an operator). The elementary prop-
agator is then reconstructed by taking the small terms into the exponent:

dp,—1 ipa—1n—an—1) _ i
K(qn, tnlqn—1tn—1) = / %e‘p Bt —f eH(pn—1,an—1) | (10.25)

We can now combine (10.18) to get the full propagator:

dpi
K(qr, telqoto) = j_lquj (n/zm)

. N—1
1
XeXp( e(pig1— H(ps, qz))) , (10.26)

I=0
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10.1 General Path Integral

where q; = (9141 — q1)/€. Notice that there is one p integral for each interval (N
intervals), while there is one less g integral over points connecting these intervals.
In the continuous limit we write the general path integral

K(gs telqoto) = / Dg [ Dpesp / deL(p(m)a(o) | . (1027)

where
N—1 dp,
Dp = _— 10.2
/ g lcl;[o’/ 2th ! (1029

/Dq = :}ljj/qu . (10.29)

Here and in the following the absence of integration limits implies the integration
over the whole space, i.e. from —oo to +o00. In the exponent we get the classical
Lagrangian (not an operator) as a function of the paths in the phase space defined

by q(t) and p(t):
L(p(7)q(z)) = p(7)4(7) — H(p(7).4(7)) - (10.30)

For the Hamiltonian form as in (10.10) we have an independent momentum-
related term. So in the path integral we have independent Gaussian-type integrals
over the momentum. These can be integrated by using

/dp exp( (pq — p_)) = exp (amqu) \/ me (10.31)

by extending it to imaginary space (a = ie/h). We then get the path integral in the
sole coordinate space as a set of N trajectories and N — 1 integrals:

N N—1
/2 i€
K(gr, trlqoto) = (Znhm /qu oP (ﬁ ( )))

I=0

(10.32)
or in the continuum version
qr )
i
K(gs. telgoto) = / Dgexp (5 S(qm)) , (10.33)
90

where we assume the normalization constants are absorbed in Dq. The functional

tr .9
stao) = [ ar ("L - vigmy) (1034

to
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10 Path Integral Technique in Dissipative Dynamics

denotes the classical action functional given for a path q(7) starting at g, at t; and
ending at gr at tr. The path is continuous in time and is forward in time (i.e., it has
no loops or parts with back-propagation).

Note that the path integral is the symbolical expression whose explicit simulation
would require us to calculate the discrete expression (10.26). On the other hand,
when the action is calculated, the proper normalization can be defined using some
specific known-limit cases.

10.1.1
Free Particle

Let us now consider a free particle. In this case V(q) = 0 and the propagator is
given by

i
K(ae taod) = (e exp (5711 ) (1035
The Hamiltonian is
~2
a=2. (10.36)
2m
We then have
iplt
K(ae a00) = o exp (5 50 )l (1037

Inserting the momentum eigenstate complete basis, we get the Gaussian integral

[ dp i it p?
K(qr, t1900) = 77 PP =) — 55— ) (10.38)

which finally gives

K(qr, t|q00) = m exp ﬂ(qf—qo)2 . (10.39)
2miht 2ht

The same result should be available from the path integral. The action over the
paths is given by

t

sta() = 5 [ aoda(e) = 5 i doao) (1040
0

Now we partition the path into the classical g part and the deviation y:

q(r) = q(7) + y(7) - (10.41)
For the classical paths the straight paths contribute

I—7
t

_ T
q(7) = qo +arg - (10.42)
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These give

S(a(r) = %(qf— qo)” - (10.43)

For the quantum paths we can take the Fourier series

p(r) =Y Eqsin(vr). (10.44)

a=1

Here v, = ma/t guarantees boundary conditions y(0) = y(zr) = 0. The action
functional over the quantum paths is given by

t .2 . 0o 2 t
S(y(7) = /dr%() -y g;%/drcosz(%z), (10.45)
0 a=1 0
which gives
ma?
S(r(o) ==, > Ear. (10.46)
a=1

The path integral over the quantum paths is

/Dy exp(...) o [ ] (/ d&, | exp (%S(y(r))) : (10.47)

which gives the Gaussian integrals over the &,. However, note that this quantum
contribution does not affect the dependence on the endpoints go and gr. This path
integral thus affects only the normalization of the probability amplitude. The nor-
malization factor can be easily obtained from

/dqfl K(gr, t1q00)[* = 1, (10.48)
which finally gives the same result as (10.39).

10.1.2
Classical Brownian Motion

In this chapter we are describing quantum path integrals. However, we can use

the path integral to describe a simple stochastic process — Brownian motion. In the

simplest model, Brownian motion is described using the diffusion equation
dw(x, t) 2w (x, 1)

s =D— 5 (10.49)

The solution for the initial condition is

1 x?
exp|—) . 10.50
VAnDt p( 4Dt) ( )

w(x,t) =
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10 Path Integral Technique in Dissipative Dynamics

We can introduce the propagator

w(x,t) = /dxi K(x, t]x;t;)w(xit;) . (10.51)

The propagator is then given by

1 _A\2

M) = ———_exp (—M) . (10.52)
4nD(t—t) 4D(t —t)

Let us now divide the time interval t — ' into N intervals and consider the com-

pound probability that the particle is at point x, at time t, in the interval dx. The
probability of such a path x(7) is

dx )N exp (- %o)? (- x1)? (N — xN—l)z)
J4mDe 4De 4De 4De

N t
= (M) exp —L/dm'cz(r)
471 Ddt 4D
l/

Now if we sum up over all possible trajectories, or integrate over all intermediate
points x,, we will get the full propagator in terms of the path integral:

K(x,t

(10.53)

X2 t
1
K(x2, ta] %1 t1) = /Dx exp —E/d‘ta’cz(t) . (10.54)
X1 t/

This result also introduces the weight of a single trajectory. All trajectories start at
x; and end at x; and

fxzp li (/ dx )N (10.55)

X = m R — . .
N—oo0 V4mnDe

x1

Similarly, the path integral can be applied to the overdamped oscillator motion
in a harmonic potential (see Section 3.6). In that case we will get a slightly different
weight for a single trajectory. The stochastic process &(7) is then described by the
path integral of the form

I
Kosc (& tloto) = /DE Posc(&(7)) - (10.56)
o
The probability weight of each path

1

Pacli ) = exp |~ [ deté(o) + DE@N | - (1057)

Classical stochastic processes can thus be easily described by the simple path
integrals and these can be used in the mixed semiclassical models as we show later
in this chapter.
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10.2
Imaginary-Time Path Integrals

In the previous section we showed how the quantum mechanical transition proba-
bility amplitude can be given in terms of the paths in space. We will use this result
to derive equations of motion for the density matrix. In this section we present an
elegant connection between the path integral expression of the probability ampli-
tude and the partition function of statistical physics.

The partition function of the canonical ensemble was described in Chapter 7 and
is given by

Z = (e Py, (10.58)
where 8 = (kg T)™!. Consider the operator
Z(B)=ePH . (10.59)

It is equivalent to the evolution operator defined by (10.13) if we extend the time
axis into the imaginary dimension by taking 8 = ith™!. Then Z(8) = U(t =
—ifh). In the coordinate representation we can then calculate the amplitude

(ad Z(B)qs) = (asle™"H|qs) , (10.60)
and by taking the trace, we find the partition function
zZ= /dq<q|e_ﬂﬁ|q). (10.61)

Knowledge of how to calculate the propagators can be easily translated to the
problem of the partition function. Using the analogy with the path integral of the

previous section, taking ty = 0 and tr = —ifh, as well as g9 = gr = qn, we find
the imaginary-time path integral expression for the partition function:
q
Z = /dq/Dq’exp (—%S(E)(q’(r))) ) (10.62)
q
where now
Bh .
$®(g(r)) = /dz[@ + V(q(r))] . (10.63)
0

The functional S® is called the Euclidean action for a path starting and ending at
the same coordinate g. The starting time is 0 and the time propagates along the
imaginary axis. The integrals

/dq/qu = /qu (10.64)
q
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can be denoted as a single path integral, whose endpoints are additionally integrat-
ed over the whole space.

In the same way we can now write the canonical density matrix, which in the
coordinate representation reads

W(g2q1) = Z~ (a2 Z(B)l 1)

92
= Z—lqu exp (—%S(E)(q(r))) . (10.65)
q1

Now here the initial and final propagation coordinates of the trajectory g(t) are
different, leading to the canonical density matrix in the coordinate representation.

When the total system consists of an observable system and a bath we have the
additive Hamiltonian

H=Hs+ Hy + H . (10.66)

We denote the system coordinates as q and the bath coordinates as x. In the same
way, we get for the Euclidean action

$® = 59 (q(7)) + {7 (x (7)) + S\ (a(r). x(7) - (10.67)

For the observable system we can easily define the reduced canonical density matrix
by tracing over the bath coordinates:

q2
0(q9291) = trg W(q2x, q1x) = Z_1/Dq/D1x

1 1
x exp (—5 ssa(o) = 5 S8 (<(2) — 5 (a(), x(r))) :
(10.68)

Note that the action functionals in the exponent are classical functions (not oper-
ators). The exponent thus factorizes. Additionally we define the reduced partition
function of the system ZsZr = Z and we get

q2
1
o) = 257 [ Dgesp (7 SéE)(qu))) FO(a(r), (10.69)
q1

where we introduced the influence functional

FOa(e) = 2" [ Drxexp (5 587to) — 3 57002000 ) - 1070)

h
In the influence functional all paths run over loops with the same initial and final
coordinates. That is not the case in the expression for the system density matrix
in (10.69). In this path integral, the density matrix is defined as a regular path
integral of system quantities. However, the bath affects the system through the
influence functional.
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10.3
Real-Time Path Integrals and the Feynman-Vernon Action

In the previous sections we described a general formulation of the path integrals.
In this section we consider dissipative dynamics of open systems. We thus need to
consider the time dependence of the reduced density matrix. The time dependence
of the full density matrix of the global system is given by

W(t) = e AR W (0)ei A (10.71)
In the coordinate representation we have

(a6, % W (8)| qif) = / dg, / aq [ dx, / dx]

K(qrxe, tlqi%;i, 0)(qix;| W (0)|q;x/) K* (qfxf, t

q;%/,0) .
(10.72)

K(qsxr, t|qixi, 0) is the coordinate representation of the time-evolution operator in
the space of the system and bath coordinates,

K(gsxs, t1gixi, 0) = (qexele ™ A% gix;) (10.73)
which we described in previous sections in this chapter. For the propagators we can
now write the real-time path integral

as xf .
qi%i,0) = /Dq/Dx exp (%S(q(r),x(r})) . (10.74)
ql

Xi

K(qexe, t

The functional integration has endpoints q(0) = q;, q(t) = g x(0) = x;, and
x(t) = xr. The total action is given by a sum of Lagrangians:

S=Ss+Sg+ S = /dr[Ls(q(T)) + Lr(x(7)) + Li(q(7), x(7))] . (10.75)
0

The reduced density matrix of the system is then given by taking the trace over the

bath:
plard) t) = / docel e, 36| W ()| afe) (10.76)

Since the action S is the classical functional, the conjugation amounts to complex
conjugation; thus, the density matrix can be immediately described by the com-
bined path integral of bra and ket parts.

Let us assume that the initial state is a product state of the system and the bath.
The bath is in a canonical ensemble. We can then write

~ 1 ~
W(0) = p(0)© - exp (-81) - (10.77)
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For the reduced density matrix we insert (10.77) into (10.72) and then into (10.76).
For propagators we use the path integral expression (10.74) to finally get a compact
expression for the reduced density matrix:

p (9eqf t) /dqz/dq J (4. a5 tlg:, 45, 0) p (41, 45,0) (10.78)

with the reduced density matrix propagator

J (a5 45 t1qi, 95, 0) =
o , .
[ Dg / Dy’ exp (%Ss(q(f)) - %ssm’(r))) F(a(). q'(2)). (10.79)

qi q;

Here the functional

F(q(z), q' (7)) /dxf/dxlfdx x;le” 'BHR|x /Dx/Dx

X exp (+£SR[9€] + £51[x, q] - g - Sglx'] £Sl[x’, ‘1/])
(10.80)

is called the Feynman—Vernon (FV) action functional [48]. The FV functional ac-
counts for the effect of the bath on the system during the propagation. This func-
tional depends only on the bath and the system-bath interaction and it can be cal-
culated separately. It consists of two conjugate propagators as functionals of paths
x(7) and x’(7) and the equilibrium density matrix, which can be given in terms of
the Euclidean path integral [49].

Next let us consider the bath of harmonic oscillators [49] as defined in the
Caldeira-Leggett Hamiltonian (8.5). The bath-related Lagrangians are then given
by

N
Le= ) S (5200 — 02xl(1) | (10.81)
a=1
al 1 c?
L= ; (Caxa(t)q(t) ~ FmT qz(t)) : (10.82)

In this form the exponents of the FV functional factorize into those for different
bath oscillators. Now in the exponent of the influence functional we have Gaussian
integrals, which can be evaluated exactly. From (10.80) we take the direct propagator
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for a single bath oscillator, given by
xf . .
i i
/Dx exp (£ Sr(x(7)) + 7 Si(q(7), x(r))) . (10.83)

Let us take the path x(7) for the bath oscillator as
x(7) = %(7) + y(7) . (10.84)

Here % is the classical path and y is the deviation from the classical path. After
inserting the Lagrangian into the path integral, we get a single integral over the
classical path and the path integral over the deviation:

t

exp %/dr (ﬂ(’?z(f)—wzfcz(f))Jr ca?(f)q(f)—1 - qzm)

2 2 mw?

0
X/DY exp %O/dr% (yz(r)—wzyz(r))
(10.85)

The functional with respect to deviation y(7) represents the quantum corrections.
We have also dropped all terms linear in y. This is because X(7) is the classical
path that minimizes the action, while other terms of the classical paths do not
contribute.

The action of the classical trajectory is computed by performing the integration
by parts with respect to the % term and using the equation of motion, (8.8). We
then have

Ojdf[

1 t 1 ¢?
. . c - (%
=5 (% por — % %;) + 3 / drx(7)q(7) — T mar /drqz(r) . (10.86)
0 0

|3

(%% — w?%%) + ckq — E ¢ q°
2 mw?

We use ¥(0) = x; and X(t) = xy.

The next part is the evaluation of the path integral over the fluctuations y (7).
These paths start and end at y = 0. The corresponding path integral can be evalu-
ated by using the Fourier series

p(0) = Eusin(vr). (10.87)

a=1
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Here v, = ma/t guarantees proper boundary conditions. The second row

in (10.85) due to orthogonality of trigonometric functions is then (apart from
the normalization)

/Dy exp(...) « l_[ (/ d&, | exp (% Z g2 (v — a)z)) . (10.88)

These are essentially the Gaussian independent integrals that give

oo
imt 4h
/ dx exp (% (v4 — w?) xz) L — (10.89)
—o0

imt (V%z - wz)

Noting that
— X \2 sin(x)
al;[1 [1 - (R) } == (10.90)
we have
wt
/Dy exp(. sn(ol) (10.91)

The normalization constant can be obtained by comparing the result with the free
particle result (w — 0) in Section 10.1.1. which finally gives

/D e 10.92
ex .
y exp( 2mifsin(wt) sin(wt) ( )

The classical path for predefined initial conditions was given by (8.16). A solution
with the boundary condition %(0) = x; and %(t) = xf can be obtained from the
initial-value solution by choosing the appropriate p© value:

t

_ mox .cos(wt) _ sin(w(t — s))
P = e " e C/ sin(n 109 (10.93)
which yields
o ‘sin(a)(t—r)) sin(wT) c ; ) B
(1) = % sin(wt) + xfsin(wt) + o /sm(w(r s))q(s)ds
0
a %Zﬁﬁﬁff / sin(w(t = s))q(s)ds - (10.94)
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Inserting this trajectory into the expression for the classical action, (10.86), we get
the value of the classical action:

@ = MY 124 42 2
S Tsin(l] [(xf + x7) cos(wt) — 22 x¢]

2 c

sin( sin(

zi)t) /dssin(w(t—s))q(s)+ tzf)t) /dssin(a)s)q(s)
0 0

t s

CZ

- —/ds/dusin(w(t—s))sin(wu)q(s)q(u)

mo sin(wt)
0

0
2 t
c 2
" /dsq (s) -
0

(10.95)

The remaining task is to calculate the trace over the initial bath density matrix.
In Chapter 7 we gave the equilibrium density matrix of a harmonic oscillator in the
coordinate representation (7.78). We can rewrite it as

’ . ﬁa)a MaBa ”
oB(%, %) l:[ s ( 2 2nh sinh(Bw )

—M 2 72 _ ,
Xexp( 2hsinh(Bw,,) ((x + x"%)cosh faw, —2xx )) .

(10.96)

The remaining integrals over the endpoints x; and x are then again the Gaussian
integrals, which finally give

/ 1 4
Frv(q(7), q'(7)) = exp (—g Sev(4(7), q (T))) , (10.97)
and the FV influence action is [48]

Sev(a(z), 4'(2)) = / av / av(q(t) - '(¢))
0 0

X [C(t/ _ t//)q(t//) _ C*(t/ _ t//)q/(t//)]

+i,1/dt’(q2(t’) —q*(t) . (10.98)
0
Here
do _, w ..
C(t) = / I C"(w) [coth (ﬂh7> cos(wt) — 1sm(a)t)] (10.99)
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is the equilibrium bath quantum correlation function given by the spectral density
and

oy [doc)
2mgw? 2t w
a
is the potential renormalization term, usually denoted as the reorganization energy.
The FV influence action has self-renormalization terms such as q(t") C(t' —t")q(t")
and g(t)q(t’) as well as cross-terms of the type ¢’ (t") C(t" — t”)q(t"). The bath thus
convolutes the left and right elements of the density matrix, thus making the whole
evolution entangled and convoluted.

10.4
Quantum Stochastic Process: The Stochastic Schrédinger Equation

Quantum mechanical systems are always in the presence of stochastic noise of the
environment. This coupling introduces uncertainty and reversibility. This action
of the environment in the Langevin meaning can be understood as the external
time-dependent fluctuating force. In that case the classical system obtains fluctu-
ating character. A quantum system, in principle, can be understood on the same
basis. As described in Chapter 4, the wavefunction of an isolated system follows the
Schrédinger equation. As we showed in previous sections in this chapter the prop-
agator of the wavefunction can be given as a path integral. In this section we briefly
review the derivation of the stochastic Schrédinger equation following [50, 51],
which directly apply the FV result to describe a fluctuating wavefunction of the
system coupled to the environment.

The common assumption is that there is a quantum system coupled to the har-
monic bath. The reduced density matrix propagator of such a system is given
by (10.79), while the FV influence functional has the form of (10.98).

Consider the real stochastic Gaussian process &(t) and the statistical average of
the integral [52]

G(f(r) = <eXp iy/drf(f)f(r) > . (10.100)

where f(7) is a real function of time. The angle brackets here denote the statistical
average over fluctuations. This average can be calculated by expanding the expo-
nent in a Taylor series:

n!
n=1

Gy =1+3 WS ]dn.../dms(m...s(rn»f(m...fm) .

(10.101)
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As the stochastic process is Gaussian, the second-order cumulant completely de-
scribes the average (higher-order cumulants for the Gaussian process vanish). We
thus get (see Appendix A.2)

tr
<exp i)//d‘n?,(r)f(r) >= e_‘VZ_z i dra [if dr flra) (e () e (10.102)
ti

Consider now the FV influence functional (10.98), where the fluctuation correla-
tion function is real and symmetric. The FV influence action is then

1.,
Sev(a(r). 4'(7) = E/dt//dt”(q(t’) — g/ () — ) (a(t") — (1)) .
0 0
(10.103)

Comparing this integral with (10.102), we find that the FV influence functional can
be written as a statistical average of a single integral

Sev(d(7), q'(7) = <i/df§(f)(q(f)— q’(f))> , (10.104)
0

and the full propagator of the reduced density matrix becomes factorized into two
conjugate parts. These can be associated with the propagators of the system wave-
function.

The propagator of the system wavefunction is then given as an ensemble average

of
t

g _
Kian t19:,0) = [ Dgesp | & [ (Lsta(o) +is@ar | (10.105)
qi 0

The corresponding stochastic Schrodinger equation in the case of the multimode bath
can be given in the form

d i .
V= —%Hst) + Y L& ®)y) . (10.106)
k

Here Hg is the Hamiltonian of the isolated system, and ik is the operator connect-
ing the system to the kth mode of the bath, which produces the stochastic noise
&k (t). The noise is described as the real-valued Gaussian noise. In that case the
ensemble-averaged density matrix corresponds exactly to the reduced density ma-
trix.

However, this approach produces the high-temperature result, which is due to
the real-valued correlation function and the corresponding Gaussian stochastic
noise (see Chapter 8). The realistic bath at equilibrium characterized by a constant
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temperature yields the fluctuation correlation function, which is a complex-valued
function. It has been shown that this case of the FV influence functional can also
be factorized into two conjugate parts using the complex-valued fluctuating Gaus-
sian trajectories [51]. The stochastic propagator of the wavefunction that generates
the proper FV influence functional is then given by

q(t)
K(qs, tlq:,0) = / Dyet hlLsam)+zma@—f dsa@ Ce=s)a)] (10.107)

4i(0)

where z(t) is the complex-valued stochastic process with the correlation function
C(t), and the stochastic average of these propagators leads to the FV influence
functional for a specific bath correlation function.

The stochastic wavefunction of the system under the action of such a bath satis-
fies the non-Markovian stochastic Schrédinger equation in the form [50]

d . . - 5
i) =ihsly) + 3 iy~ [ ascits =952
0

(10.108)
The stochastic process zj (#) is characterized by the following properties:

(ze(t) =0, (10.109)

(zi(t)zr(s)) = 0, (10.110)
and

(2 (H)ze(s) = Cu(t —5) (10.111)

thus, it simulates the stochastic action of the bath and the statistical average of the
density matrix over different fluctuating trajectories, and then exactly generates the
proper reduced density matrix.

10.5
Coherent-State Path Integral

In this section we derive the path integral representation of the system density op-
erator in terms of coherent states. This representation is convenient for the class
of problems where coordinate and momentum operators are not used explicitly.
Instead we assume that the Hamiltonian is given in terms of bosonic creation and
annihilation operators. Again we consider the time evolution of the density opera-
tor:

W(t) = e il ()it (10.112)

I
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The density matrix in the coherent-state representation is:

(o' | W (t) /d2 ’/dza K(a', a: )(a}| W (0)|ai) K* (i, a: t)
(10.113)

where K(a, a;; t) is the coherent-state representation of the time-evolution opera-
tor

K(a, ai; t) = {ale 7 q;) . (10.114)

We will now calculate this quantity similarly to in the previous subsections.
First we insert the unity resolution by the coherent states:

K(a,ai;t) = / dzsl K(a,ay;t —t)K(ar, aiz t1), 0<t <t, (10.115)
and divide the time interval into N equidistant steps of size e:

t:t,=ne, e€=t/N, (10.116)
and n =0,..., N. We then have

/d2a1/d2a2 /dZaN_l
O( ait -

K(a, an—1;€)... K(ay, ai;€)K(ay, ai;e), (10.117)

where we have the infinitesimal propagator
K(aa, aq;€) = (a,] exp (—%I:Ie) laq) . (10.118)
In the limite — 0,
L) ~1- LA 10.119
exp 5 €~ n €..., (10.119)

and the integral is given by

2 2
(a2]1]aq) = exp (ai"al— |a21| - |a22| ) . (10.120)
For the term He we assume a Hamiltonian of the form that conserves the number
of particles:
H=>Y Ana™am. (10.121)

Expansion in the coherent states is trivial. Since

atmam™n) = n(n—1)(n—2)...(n —m+1)|n), (10.122)
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we have

Atmam _ o km,m * |a1|2 |a2|2
(azla™a™ar) = a;"a" exp | aya; — T (10.123)

The expansion of such a Hamiltonian in the coherent states then gives

: 2 2
{az|1 — %Hdal) = exp (a;‘al — |a21| — |a22| )

X [1 — %eH(az, al)] , (10.124)
where H(az, a1) = Y., Ama3™al: here all a7 have been replaced by a; and all
4 have been replaced by a;. When e is vanishing, by exponentiating the last term,
we get

K(ag, a1:€) = (az|aq) exp (—%eH(az, al)) . (10.125)

We now can combine the elementary propagators to get

N—1 dzak
K(a,a;t) = lim (aloy—) (l_[ / - <ak|ak—1>)
k=1

N .
X exp (Z (—% H(ay, ak—l))) : (10.126)

k=1

or in the continuous limit we can write the path integral

i

a;
K(a,, ait) = /Da exp (h S(a(r))) , (10.127)
a
where the action in the coherent-state representation is
t
S(a(t)) = /dz [iha*(t)a(r) — H(a(T))] . (10.128)
0

Here a(t) = ajatt =0and a(r) = azat7 = t.
The final expression has some resemblance to the (qp) representation of the path
integral of (10.30). According to the physical meaning, we can use the Lagrangian

L(a(7)) = iha*(t)é(r) — H(a(T)) (10.129)

and we can use all the formal theory of the coordinate representation. Now we can
write the density matrix at time ¢:

an a1
(2| W (t)|aty) oc/’Da’/Da
azi ati

X exp (%S(a’)) (21| W (0)] 1) exp (—%S*(a)) . (10.130)
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The equilibrium density matrix is given by the Euclidean action:

W(aya;) o /Da exp (—%S(E)(a(r))) : (10.131)
where
Bh
S(E)(a(r))a/drH(a(r)). (10.132)
0

The proportionality signs here signify the overcompleteness of the coherent states.
The normalization conditions can be determined at the level of the solution.

10.6
Stochastic Liouville Equation

In Section 10.4 we described the stochastic wavefunction approach consistently ap-
pearing from the open quantum system Hamiltonian. Here we obtain the equation
for the reduced density matrix for the Gaussian overdamped bath [53]. Let us now
consider the stochastic Hamiltonian

H(r) = Hs(a®,a) + I(af, a)& (1), (10.133)
where the stochastic trajectory &(7) is a Gaussian stationary process. The density
matrix of the system with the specific stochastic trajectory will be given by W(&, t)

The stochastic noise is considered as the Gaussian process with the correlation

function

(E()E(T)) = e vIF=7 (10.134)
and thus it satisfies the Fokker—Planck equation (3.84), which we rewrite here in
the form

d ~

- (& tEoto) = TP(E, tlEote) (10.135)

The term I" = y9/d& (& + 9/d&) can be understood as the operator. This process
has also been described as a path integral by (10.56) and (10.57) (here y replaces D).
We now can write the total density matrix in terms of path integrals:

(Zf

w (a?,a’f,g,t) = 7J‘Da/Da’/d§i/§D§
& &i

/
a;

<exp (5 S(a(0),6(0) — 557 (@ (), £(0)

x ps (af, af, &, 0) ps (&) Posc(£ (7)) - (10.136)
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Here the factorized initial condition was assumed:
Ws (af, a}, &,0) = ps (af, @i,0) ps(&i) - (10.137)
Differentiation of the density matrix leads to the following equation:

0

LWt = —% [1315, \?V(g,t)] [i,g(t)\?/(g,t)]+f®(§,t). (10.138)

i
ot R
This expression is sometimes denoted as Kubo’s stochastic Liouville equation.
Note that the stochastic noise generated by this approach is due to the harmonic
overdamped oscillator [53]. Therefore, it can be represented using the harmonic
creation and annihilation operators bt and b. In this approach

I ——ybh (10.139)
and

E—bT+b. (10.140)
We then obtain the operator equation

0 . VI PSRN s~ o PPN

= = __ _ - i o | — v b

W)= [Hs, W(t)] - [l,(b + b)p(t)] ybThW(t).  (10.141)
Here we can introduce the number of quanta of the bath oscillator; thus, we expand
the density matrix as

W = pa|n), (10.142)

where |n) is the bath state. We thus get the hierarchy of equations for these density
matrices:

a . ira~ . . ivnrs . ivn+1r~ .
Sobolt) = = [ s pu(t)] = nypa(t) = =57 [ L puma ()] = == [Lbusa(8)] -
(10.143)
Note that the density matrix py is described by the equation
a ira . irs .
—Polt) = =+ [Hs,po(t)] - [l,pl(t)] , (10.144)

and thus its time evolution is reminiscent of the system dynamics affected by the
bath. The density matrix gy is thus the reduced system density matrix and the other
terms are then denoted as the auxiliary density matrices.

In this treatment the stochastic noise has been described by the classical stochas-
tic process with the real correlation function, that is, the infinite-temperature limit.
The finite-temperature effect can be introduced by taking the full FV influence
functional in the density matrix propagator, (10.136), with respect to the harmonic
bath. Then differentiating the propagator with respect to time yields equations of
motion. We demonstrate the hierarchical equations of motion at finite temperature
in Section 11.8.

I
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11
Perturbative Approach to Exciton Relaxation in Molecular
Aggregates

The most general model of a quantum dissipative system consists of a set of en-
ergy levels coupled to a set of fluctuating coordinates. This model is very general
and covers a broad range of microscopic systems where the electronic degrees of
freedom can be distinguished. Weak thermal fluctuations by nuclei comprising the
bath can be easily identified. In the other context, we may address the problem of
spin dephasing in the ferromagnetic or the current fluctuations in a superconduc-
tor. The electronic excitations in molecular aggregates are unique in this class of
systems because their electronic excitations are localized on separate molecules as
described in Section 5.4, while fluctuating nuclear vibrations originate from local-
ized intramolecular nuclear normal modes. These vibrations are usually assumed
to be isolated; thus, each molecule is then coupled to its own independent bath co-
ordinates. Additionally, since all molecules in the aggregate are often of the same
type, the different bath modes are of the same type. We will describe this model in
this chapter.

The theoretical description of molecular excitations is usually given in terms
of the perturbative exciton relaxation schemes. Within such an approach the in-
teraction of electronic excitations with intramolecular and intermolecular vibra-
tions causes a disruption of the phase relationship between excited states of the
molecules. Such a type of interaction has a distinct influence on the coherence in
the exciton dynamics and plays the dominant role by determining the exciton re-
laxation pathways, which is often described in terms of the Redfield theory. The
simplest molecular aggregate — the molecular dimer — is an ideal model system
disclosing effects caused by the excitonic quantum coherence [54, 55] and display-
ing energy relaxation and transport pathways. We present simulations on this type
of system later in this chapter.

Recently developed nonlinear spectroscopies, such as two-dimensional photon
echo spectroscopy [56-59], were a key tool in demonstrating a complex pathway
of energy transfer in LH2 [60] and LH3 [61], the peripheral light-harvesting com-
plexes in photosynthetic bacteria, and long-lasting coherence in Fenna—Matthews—
Olson (FMO) complexes [57, 62] and in LHCII [63]. Recently, two-dimensional pho-
ton echo spectra were also recorded for the so-called reaction centers [64, 65] and
for other molecular aggregates, for instance, for polymers [66] or for cylindrical
(bitubular) J aggregates [67]. Photosynthetic molecular aggregates were described

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA. Published 2013 by WILEY-VCH Verlag GmbH & Co. KGaA.

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

245

I

@

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

246

Chap. c11 — 2013/6/3 — page 246 — le-tex

11 Perturbative Approach to Exciton Relaxation in Molecular Aggregates

by using the exciton concept [24]. Apart from clear identification of exciton transfer
between pigment molecules or their clusters, quantum coherence and population
oscillations were also observed. All these new data boosted active research which
aims to evaluate the importance of coherence, entanglement, and noise in the en-
ergy transport of biological molecular complexes [68-73]. This chapter reviews the-
oretical approaches based on the density matrix method used in molecular aggre-
gates.

1.1
Quantum Master Equation

In this section we consider a quantum system coupled to a bath. Let us denote
the system Hamiltonian by Hg, the bath Hamiltonian by Hp, and the coupling
between the system and the bath as Hgp. The total Hamiltonian is then given by

H = HAs+ Hy + Hgg . (11.1)
The time dependence for the density matrix of the system coupled with the bath,

W, follows the Liouville equation (we take 7 = 1 throughout this chapter):

dd_‘f —i[aw] (1.2

At this point we transform the problem into the interaction representation (we
denote its operators by the time dependence):

W = exp (—i(Hs + Fg)t) W(t)exp (i (s + Hp ) t) - (11.3)
This leads to the following transformation of the Liouville equation

4 = —ilA W 11.4
S W =—i[As, W), (1.4

where Hgg(t) is the interaction representation of the system-bath Hamiltonian:
I:ISB(t) = exp (l (I:IS + I:IB) t) I:ISB exp (—l (I:IS + I:IB) t) . (115)

First we integrate (11.4) from some arbitrary initial time £:
t
W (1) = W (to) —i/dr[FISB(r), \fc/(r)] . (11.6)
to
Then we substitute this result into the right-hand side of (11.4):

%\fv(t) = —i[ Fsa (1), W(to) | - / de [ Asn(t), [ Asa(0), W(0)]] . (117)

to

I
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11.2 Second-Order Quantum Master Equation

It is worthwhile mentioning that no approximation has been done so far, that
is, (11.7) is exact.

A general simplification can be fulfilled at this point on the basis of two argu-
ments. The first is that the term containing W (t) comes linearly into the equation
of motion. If we assume that the system under the influence of the bath is dissi-
pative, the initial condition should be “forgotten” after a sufficiently long time. The
second argument is that the initial condition amounts to the point of reference
of the problem. Assuming that the bath is composed of harmonic oscillators and
the system-—bath coupling is linear in the bath coordinates, we cause these terms
to vanish when we perform averaging over the equilibrium bath when the density
W (to) corresponds to the canonical ensemble for the bath coordinates. With these
arguments in mind, we can safely disregard the initial condition, set ¢, to infini-
ty, take the trace over the bath, and have the equation of motion for the reduced
density matrix p(t) = Trg W (7):

%ﬁm:— [ detry | Asp(t), [ Asa(z), W ()] ] - (118)

—00

This equation of motion is nonperturbative and it is usually simplified by using
various approximations [20]. The standard procedures involve assuming an equi-
librium bath with its canonical form of the density matrix at constant temperature,
denoted as the Born approximation: this gives W (t) ~ p(r) ® pg. It allows us to
define the relaxation operator, and the resulting equation is denoted as the gen-
eralized master equation. That form can be used to compute the time-dependent
density matrix, while keeping the memory effects. When the bath dynamics is fast,
the reduced density matrix of the system can be taken out of the integral, which
implies the Markov approximation and the second-order perturbation expression
for the relaxation operator. Using the harmonic bath model with a specific spectral
density, we get the level of approximations which is denoted by the Redfield (or the
modified Redfield) theory. Even more approximations can be involved by including
only diagonal and zero-frequency terms in the relaxation operator. That gives the
secular Redfield theory.

11.2
Second-Order Quantum Master Equation

In the Liouville space, (11.4) is given by

%Wl(t) = —iV(H) Wi(t) (11.9)

where the system-bath interaction in the Liouville space is

V(A — [ﬁsB(r),A] . (11.10)
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The first approximation is the condition that the total density matrix can be fac-
torized into the system p(t) and the bath components (Born approximation). The
second approximation is that the bath is in the equilibrium state, pg, all the time:

Wit) = pit) @ pg - (11.11)

The last step is to perform the trace operation over the equilibrium bath variables.
This gives the generalized quantum master equation, (11.8), in the form

d t
apl(t) = —/drtrB V(@E)V(r)pi(t) @ ps) - (11.12)

This Liouville space expression is very compact and captures the essential physi-
cal insight: the natural quantity which affects the density matrix dynamics is a two-
times correlation function of the system-bath interactions. It is not very convenient
for practical simulations, since one has to consider the complete microscopic bath
dynamics inside the trace.

We next take a bilinear form of the system-bath interaction:

Hsg = > Suén , (11.13)

where n is an index of expansion (i.e., not a state of the system), S, is the system
operator (usually a projector), and g, is the associated bath coordinate operator. In
the Hilbert space,

V(A <Y Su(t)dn(t)A— ASy(t)dnl(t) - (11.14)

The trace over the bath then yields coordinate—coordinate correlation functions and
we get a compact form:

d t
apl(t) = —/drRI(t, 7)p1(7) , (11.15)

where the time-nonlocal rate superoperator is defined as

Ri(t, 0)or(1) = D [ S(8) 30001 (1) Con(t = 7)

— Su(1)01(7) Su(T) Cam(T — 1)
— $4(7)p1(T) S (t) Conm (t — 7)
+01(T) $(7) S () Crom (T — t)] . (11.16)

Here

Cmn(t) = trp (Gm(t)qn(0)p8) (11.17)

I
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11.2 Second-Order Quantum Master Equation

is the coordinate—coordinate correlation function. Note that in the bath equilibrium
the relaxation operator is essentially a function of the time difference between t
and 7, thatis, Ry(t,7) — Ry(t — 7).

The system operator S, is understood here as the projection operator of the type
Sn = |a)(b|, where |a) and |b) are electronic eigenstates. The bath coordinate is
then understood as the specific coordinate or a whole set of coordinates, coupled
to that specific Hamiltonian element. The model includes the effect of the sys-
tem-bath interaction on the density matrix nonperturbatively, while the relaxation-
inducing terms are calculated at the level of the Born approximation. This results
in the memory-like effect of the bath through the bath correlation functions.

The rate operator is given by the second-order products of the system-bath in-
teraction. Taking the initial condition ty — —oo, we have that the rate operator is
a function of interaction delay times t — 7. The evolution according to this rate is
still infinite order in the system-bath interaction. It is convenient to introduce the
delay time s = t — t explicitly. In the Schrédinger representation we can then write

d . (e @]
5o = —i[Hs,p(t)] —/dsR(s)p(t —), (11.18)
0

with the rate superoperator

Ris)A=3" (ém G(5) S G (=) ACrmn(3)

— G(5)54 G (—5)ASy Couu(s)
+AG(5)8,G(=5)Sm C,,m(—s)) . (11.19)

Here we used the wavefunction propagator
G(s) = exp (—iHss) . (11.20)

The integrodifferential form of the quantum master equation obtained is very com-
plicated. It can be simplified by using the Redfield approximation, that is, by assum-
ing the second-order approximation for the relaxation kernel [74]. The second-order
level is obtained by the Markov approximation. To that end we assume that the sys-
tem-bath interaction is weak and the system density matrix in the interaction picture
is a slowly evolving function, compared with the decay time of the relaxation tensor,
that is, it can be taken out of the integral, since R;(t — 7) decays much faster than
pi(t) varies. Equation (11.15) can be simplified as

fdr’RI(t—T’)pI(r/) ~ /drRI(r)pI(t), (11.21)
to 0

where we took ty — oo and we introduced the integration over the delay time 7 =
t — 7/. The integration over the delay time 7 can be performed and the time-local
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equation with the time-independent rate matrix is obtained. In the Schrédinger
picture we get the Redfield equation is

3 P(1) = —ilHs, p()] = Kp(t) (11.22)

where the Redfield relaxation superoperator is given by
o0
K= /drR(r), (11.23)
0

and the integral kernel is defined by (11.19).
The Redfield relaxation superoperator can be simplified considerably if the sys-
tem operators are expanded into an orthogonal basis |a). The Hamiltonian is

A =" (Rap + Fravidas ) 1a) (bl + Fn(5, ) - (11.24)
ab

In general hyp = O4p€, + Jup. The remaining part can be partitioned out into the
term Hg(p, §), representing the fluctuating environment, and the weak coupling
amplitude h,, as a system—bath coupling amplitude and §,}, as the generalized co-
ordinate of the bath, coupled to system Hamiltonian element ab. Inserting (11.24)
into (11.23) and (11.19), we obtain the relaxation matrix defined by fluctuation cor-
relation functions:

oo
Kab,a/b/ = Z / dr (6bb’ Z ’;aeﬁdccae,dc(f) Ged(T) Gca/(_f)

cd
- ’;aa’ﬁcd Ccd,aa’(_f) Gb’c(T) Gdb(_T)
— hachys Cybac(T) Gaa(T) e (—T)

+040 Y heahey Ccd,eb(—‘f)Gb/c(T)Gde(—T)) . (11.25)

The correlation function C,j .4(7) describes fluctuations of the Hamiltonian ele-
ments ab and cd. The functional form of the correlation function and the coeffi-
cients h4; can be defined for a specific system and the bath model.

A natural choice for the basis set for the Redfield relaxation superoperator is the
eigenstate basis of the system Hamiltonian. This choice makes simulations much
simpler, and it allows us to introduce the secular approximation and to define the
requirement for the long-time limit. Let us assume that states |a) are eigenstates of
the system Hamiltonian (the exciton states in the case of the exciton Hamiltonian).
In that case

hab = 6ab5a (11.26)

is diagonal and the Redfield equation reduces to

d

Epah(t) = _iwabpab(t) - Kab,cdpcd(t) , (11-27)
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11.2 Second-Order Quantum Master Equation

where w,, = €, — €.

If the system-bath coupling is weak compared with the splitting of energy lev-
els, the relaxation effect is a small perturbation to the natural system evolution —
quantum phase rotation. The free-system solution is

Pl (t) = exp(—iwast) o) (0) - (11.28)

The relaxation effect can be included approximately by a slowly varying amplitude
of the form

pab(t) = ph} (1) exp(—iwast)pl) (0) - (11.29)

(1 . .
Here we assume | pw < wgp, where the dot denotes the time derivative. The
Redfield equation in the interaction picture then gives

d m, _ ) - PLl(0)
gpPab(t) = —Kab.capeg (1) expli(@ap — @ ca)t) ~gr (11.30)
pab(o)
whose solution is
(0) :
£c4(0) .
Pab(t) = p5}(0) = Kapea =5 /drp(clzl(r) expli(@ap — wea)7) . (11.31)
P10 ]
The integral
t
/drpg;(r) exp(i(®ap — wea)T) (11.32)
0

is the essential quantity which affects the dynamics. When the system-bath cou-
pling is smaller than the energy-level splitting, p(clzl(r) is a slowly varying function
compared with the density matrix oscillation frequency. Inside the integral we have
a difference of two frequencies. If that difference is of the order of the typical os-
cillation frequency, then the integral kernel becomes highly oscillatory; the integral
thus vanishes. The terms which do not vanish are those where w,, = w.4. In
general, all energy gaps are different and there are only two general cases where
|wap — 0] K |p‘C‘; :(1) when a = cand b = d, and (2) when a = b and ¢ = d.
We thus keep only those terms in the original Redfield equation, and we disregard
all other terms. That is the essence of the secular approximation.

The secular approximation is thus different from the more general rotating-wave
approximation (RWA). The RWA may include coherence transfer terms in the case
when energy splittings of two different coherences are the same. Such a case is pos-
sible, for example, for the harmonic oscillator as was shown in Chapter 8. The secu-
lar approximation is thus more restrictive. As demonstrated, this approximation is
well defined in the eigenstate basis. In some other basis one cannot define natural
frequencies for different density matrix elements; thus, the secular approximation
cannot be defined.
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11 Perturbative Approach to Exciton Relaxation in Molecular Aggregates

The secular Redfield relaxation equation can be written in the form

d . .
gy Par(t) = —i@ap —1¥ap)Pan(t) - Oap zb: kabpub(t) (11.33)
where y,, = 0. In the eigenstate basis we have the population transport rate
(a #b)
o0
kap = —2/fiqpRe / A7y o (1) , (1134
0

while for the diagonal we have

Kaa ==Y kia - (11.35)
b

The dephasing rate of the coherences (a # b) is

oo
Yab = /df (Z |ﬁae|zcae,ea(f)e_iwmr + Z |ﬁbe|zcbe,eb(_f)e_iwber
0 e e

— 2 Re haahypp Caa,bb(f)) .
(11.36)

All these rates are given by one-sided Fourier transforms of the coordinate—
coordinate correlation function. As we showed in (8.71), these can be given in
terms of the fluctuation spectral densities.

11.3
Relaxation Equations from the Projection Operator Technique

In an alternative approach, relaxation equations of a similar type can be obtained
directly from the projection operator approach described in Chapter 9. Equa-
tion (9.49) already contains the second-order approximation in the system-bath
interaction and it is time local (time convolutionless). For a more specific deriva-
tion we require the form of the interaction Hamiltonian Hgg of (11.13). We assume
an initial condition, W(t) = p(t) ® ps, where pg is the equilibrium bath statistical
operator. Such an initial condition leads to elimination of the initial term Z¢; if we
choose a projector in the form

PA = trg{Alps . (11.37)
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Equation (9.49) leads to

o) = —% [trs { Ass ()0 (1]

i | e (o { [t =]

0
~ trg {[I:Isg(t),trg {[I—YSB(t —1), p“)(t)pB]} pB]}) . (11.38)
The first term on the right-hand side of (11.38) can be handled easily:

)

try {Asr (o = Y tro { UL (13, Un(thon S(1) = D ()51
(11.39)

where we defined (g,) = trg{d.pp} and we assumed that the equilibrium den-
sity operator pg does not evolve in time due to the influence of Hjp, that is,
Ur(t)os Ug (t) = ps.

The four terms of the double commutator term of (11.38) have to be handled
separately. For the sake of brevity, let us denote H;, = I:Iég(t), H, = I:Iég(t — 1),
and p = p(t) for now. We have terms H, H,p and pH, H;, which are Hermite
conjugate to each other, and terms H,pH, and H,pH,, which are also Hermite
conjugate to each other. We then get

HyHep = Y (@u(t)am(t — 7)) S8 (1) S (£ — 7)o (1) , (11.40)
HipHy = 3 (qm(t = 7)ax(1) SE (10" (1) S (- 7) . (11.41)

The third term of (11.38) contains terms similar to (11.40) and (11.41), where corre-
lation functions (q,(t)qp(t’)) are replaced by (q,)(gs) (see (11.39)). We now define
the bath correlation functions in the form

Com(t) = (qn(T)qm) — (qn){qm) » (11.42)

and we can write (11.38) in the form

a ~
5p(l)( ) = _% Zn: [(qn)SnI)(t)yp(I)(t)]
3 [ e X [CmmsPmse - ot

+ Cum(=7)p" (1) S} (t—r)gyi)(t)] . (11.43)
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We can now transform the resulting equations to the Schrodinger picture, p(t) =
Us(t)p"(t) Ug (). This leads to

(11.44)

where we used C;),,(t) = Cyn(—t), which can be derived from the definition given
by (11.42). This form is, in principle, equivalent to (11.18), except for the first term
(Sy), which was disregarded in (11.18).

An even more compact form of the master equation can be obtained by defining

t—to

An(t)=hl2 / dr )" Cum(®) SN (1) . (11.45)
0 m

The final form of the master equation then reads

i

9 A A
5p(t) =—3 |:Hs + Z Sn((qn) —ih/ln(t)),p(t)}

+3 (ﬁnp(t)/lj;(t) - An(t)p(t)ﬁn) . (11.46)

Here we can define an effective Hamiltonian Heg = Hs + > §,,((q,,) —1hA,(t)
which is not Hermitian. The commutator in (11.46) is defined as [ Hefr, p] = Hesrp—

pHg.

11.4
Relaxation of Excitons

The excitons of molecular aggregates are quantum systems with one key proper-
ty: they have an isolated well-defined ground state |g), and the bath in equilibri-
um is in thermal equilibrium with respect to that state. The lifetime of state |g)
is infinite. The next set of states can be reached by optical excitations. These are
called the single-exciton states. The system in the single-exciton state lasts for sev-
eral nanoseconds. However, the system may hop between different single-exciton
states. Thus, the transport theory for excitons applies for the single-exciton mani-
fold of states, which we label by |e).
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11.4 Relaxation of Excitons

The exciton model reflects the dipole-dipole-type intermolecular interaction. In
addition, each molecule is coupled to the bath, which determines the transition en-
ergy fluctuations. These energy fluctuations are the key quantities in the descrip-
tion of the transport and dephasing rates.

Let us consider the secular Redfield equation. In this case states |a) and |b) are
distinct single-exciton states |e) and |¢’). They are related to molecular excitations
|m) by the transformation

le) =) cemlm) (11.47)

where 1,,, is the exciton wavefunction. These wavefunctions transform the system
Hamiltonian into a diagonal matrix

£e =Y (Hs)mnCemCen - (11.48)

mn

The system is affected by nuclear fluctuations of different molecules. The system-—
bath interaction is thus of the form

Heg =Y hygum|m)(m| . (11.49)

The relaxation should be described in the eigenstate basis, while the fluctuation
amplitudes of the molecular excitations are then transformed as follows:

i’;ee/ = Z ﬁmCemCe/m . (1150)

The correlation functions for the Redfield superoperator in the exciton basis are
given by

Corererea(T) = D M@ (7)0n(0)) Corm CeymCesn Cegn - (11.51)

In the following we combine the fluctuation amplitudes into the energy—energy
correlation function. Additionally we assume that all molecular fluctuations are of
the same type and they are independent. We thus have

Cereseses (T) = C(T) Z CeymCeymCesmCesm » (11.52)

where
C(t) = [ (qm(T)am(0)) - (11.53)

Other types of correlation functions vanish, (g, (7)q,(0)) = 0 for m # n. With
these definitions we have the Redfield rate of exciton transfer:

keye, = —2Re Meyey erer (Werey)
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where the function M(w) is the one-sided Fourier transform of the correlation func-
tion in the exciton basis

o0
int
Mo eeses (@) = (E celmcezmcesmcem) /drC(T)e .
m 0

The dephasing rate of the single-exciton coherences is also given in terms of the
function M(w):

Vereo = Z Meie.cer (@eqe) + Z M, ey (@ese)
e e
—2Re M¢ ¢ .65¢,(0) - (11.54)

This theory thus allows us to evaluate all model parameters using the single spec-
tral density (or their family). As we additionally find, all fluctuations in this model
become correlated to some degree. So a theory which includes some additional
correlations may be desirable.

11.5
Modified Redfield Theory

In this section we consider only the population transfer, which is the most im-
portant component in the exciton relaxation and energy transfer problems. The
Redfield approach assumes that the bath is Markovian and is in thermal equilibri-
um. However, it is important that the bath is often affected by the system; thus, the
bath equilibrium for different system states can be slightly shifted. The modified
Redfield theory includes these effects: it is nonperturbative with respect to diagonal
fluctuations and it includes correlations between diagonal and off-diagonal fluctua-
tions [75] (the term “modified” was not introduced in the original paper of Zhang et
al.).

The exact result for the relaxation part of the generalized quantum master equa-
tion in the Born approximation, as shown above, in the Liouville space is given by
the relaxation kernel:

Ri(t, 7)pi(7) = trg (V(E)V(T)p1(T) ® p5) - (11.55)

In the exciton relaxation problem, the initial state is created by absorption of a
photon. Thus, pg should not be considered in equilibrium, since the equilibrium
is for the electronic ground state.

Let us consider the Hamiltonian defined by (11.24), where the system-part matrix
hgap is diagonal. Thus, states |a) and |b) are the system eigenstates in the absence of
the bath. In the Schrédinger representation for the system the population transfer
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integral kernel from state a to state b is

[R(t - T)p(r)]bh = trp {I:e—iﬁo(i—f)]bb ﬁba@ba Waa(f) I:eiﬁo(t—r):l ﬁabqﬂb} ’

(11.56)

aa

where I:IO = I:Is + I:IB, and W,,(7) is the matrix element of the total density matrix
in the eigenstate basis, still an operator in the bath subspace. Let us assume that
the bath performs stochastic fluctuations, so in the Heisenberg representation for
the bath Hamiltonian g,(t) is the time-dependent fluctuation. Now keeping the
second order in the off-diagonal fluctuations g, in the eigenstate basis, we write
the adiabatic propagator with respect to electronic state |a) as

t
[eiﬁo(‘—”] — exp | iea(t — 7) —I—i/dr’qm(r’) . (11.57)
For the initial state a and the final state b we then get
[R(t = )p(0)]os = [hal” expliway(t — 7))

¢
X trg | exp —i/df/%b(":/) ba(7)
T

X exp —i/dr’qm(r’) Waa(t)qan(t) | - (11.58)
t

The last step in formulating the problem is to determine W,,,. Itis taken as the total
density matrix when the bath is in thermal equilibrium with respect to exciton state
|a). To obtain that limit we take the time limit for which the bath density matrix
remained in state |a) as infinitely long time. We thus get

[R(t = 2)0(1)]ss = |hbal’ Paa(t) expliowas(t — 7))
t
x lim trp | exp —i/dr’qbb(r’) dba(7)
t/—>—00

T t/
X exp —i/dr’qm(r/) PB €XP —i/dr’qm(r/) gan(t) | . (11.59)
t/ t

This trace can be calculated exactly using the cumulant expansion when the bath is
harmonic (see Appendix A.8). We then get the following rate expression in terms

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

258

Chap. c11 — 2013/6/3 — page 258 — le-tex

11 Perturbative Approach to Exciton Relaxation in Molecular Aggregates

of the so-called spectral lineshape g(t) functions (A98):

(e @]
ko = 2Re|ﬁ;m|2/dreiwu”{gah,ba(z)
0

—[&bb.ba(7) = Gaabal(T) + 2i4baaa] [Gabaa(T) — abbb(T) + 2idabaal}
X €XpP(—Zaa,aalT) — gbb,bb(T) + Laa,bb(T)
+ gbb.aa(T) + 2i(Aaabb — Aaaaa)T) -

(11.60)

Here
t T
Zabcd(t) = /dr/dsCab_cd(t—s) (11.61)
0 0

is the so-called lineshape function, dots and double dots denote the time deriva-
tives. and 1,4, ¢4 are the reorganization energies (Stokes shifts) given in the limit

Aabea = = lim gapca(t) - (11.62)

Also note that §(7) = C(1).

The modified Redfield rate expression is very suitable for excitons. It includes
full equilibration in the excited initial state. The way this expression interpolates
between Redfield and Forster theories has been demonstrated [31, 76]. It also in-
cludes correlations of diagonal and off-diagonal fluctuations. The modified rate
formula thus explicitly includes the bath relaxation effects.

11.6
Forster Energy Transfer Rates

We next consider the Forster model for energy transfer between donor molecules
(initial state — d) and acceptor molecules (final state — a) with weak electrostatic in-
teractions. It is thus yet another population transfer model. In that case their tran-
sition energy and coupling fluctuations can be considered as independent. The in-
termolecular coupling is now considered as a weak perturbation due to the dipole—
dipole interaction between transition charge densities, which is described in Sec-
tion 5.4.

The Forster energy transfer rate expression follows directly from the modified
Redfield rate expression. In the modified Redfield rate expression we then only
need to consider autocorrelation functions, that is, the quantities ga4 44, 44,44, and
Zadda = Zdaad; all other combinations of indices have zero amplitudes. We then
have

Faa(t) = F3)(7)| Usal® (11.63)
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and
FO(7) = exp(—i0adT — Zaa,aa(T) — Gaa,da(7) — 2ikda,at) - (11.64)

Integrating these relations, we obtain the Forster energy transfer rate formula [76,

77]:

K = Ul [ 52 Aui)Fa(o) (11.65)
Here

Aufe) = [ drexpli@ — e)7 = ganaale) (11.66)
and

Falw) = [ drexp itw = (e~ 2hasaa) - ghaaulr) (11.67)

are spectral lineshapes of the acceptor absorption and the donor fluorescence, nor-
malized to unit area (these are derived in Part Two). The symmetry g(z) = g*(—7)
ensures that 4, (w) and F;(w) are real. Equation (11.65) is commonly used with ex-
perimental normalized absorption and emission, and the intermolecular coupling
is calculated using the dipole—-dipole model between transition densities.

11.7
Lindblad Equation Approach to Coherent Exciton Transport

The relaxation process of a quantum system is in general not time local, that is,
it has some memory. The memory is present since in practice the energy trans-
fer through the bath has a finite timescale. This is formally described by the bath
correlation function. However, when the bath correlation time is short compared
with the system dynamics time, the time-local equation well describes the exciton
dynamics. The memory may still effectively remain due to the nonsecular nature
of the equation, that is, the effect of excitation is transferred from population to
coherence and back, leading to some effective phase delay.

We first assume that we can prepare the system at the initial time t = 0 in the
system and bath product state, so the total system density matrix is of the form
W(0) = p(0) ® pp. Such a condition is commonly realized in optical excitation of
molecular aggregates. Following the description of the Markov processes, we can
define the transformation of the system density matrix to some later time [9]:

p(t) = V()p(0) = tr (U(1)(0) ® ps UT(1)) | (11.68)

where U(t) is the Green’s function of the total system. This transformation is some-
times denoted as a “dynamic map.” If we write the bath operator in its eigenstate

basis, pp = >, Anl¢n)(@nl, we find
p(t) = V(£)p(0) = D An(@m| U(t)|@n) p(0) (@ | UT() | @) - (11.69)
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We can now denote Wy, ,,(t) = +/An{@m| U(t)|@n) and get

VIDPO) = D Wi (Hp(O)W],, (1) (11.70)

Taking into account that there is no assumption about the dynamics involved, the
dynamic map is a completely positive and trace-preserving operation; however, it is
time irreversible.

As in Markov processes we may use Markov-type relations, that is,

V() V(t) = V(b + 1) . (11.71)
This condition is satisfied by an exponential form,
V(t) = exp(Lt) , (11.72)

and the density matrix of the system then satisfies

% =Lp. (11.73)
That is the generalization of the Liouville equation and it now includes the effects of
the coupling with the bath, that is, the relaxation. This dissipative process formally
composes the quantum dynamical semigroup and £ is its generator.

It is possible to construct the most general form of the superoperator £ by ex-
panding it into an arbitrary set of operators. However, the whole mathematical
derivation is beyond the scope of this book (see, e.g., [9]). The most important part
is the final result:

N2—1
Lp=— —i [FIS, p] + > % (AkpA'; — %A”‘,;Akp - % A",;Ak) . (11.74)
k=1
This is called the Lindblad form [78]. Here the first term on the right-hand side
represents the unitary part of the dynamics, and A, are Lindblad operators. While
they are obtained as mathematical constructions, they have the meaning of various
modes which couple the system with the bath (collective coordinates). Having tak-
en the Lindblad operators as dimensionless, we have y; as the relaxation rates of
different decay modes. The sum runs over the number of independent bath modes;
N is the number of degrees of freedom (number of states) of the system.
Assuming that the number of bath modes is uncountable, we next write the
Lindblad equation as follows:

d , AU D S
ap:—1[Hs,p]+Z(LkaL——L;CLkp—EpL;CLk) . (11.75)
k

N

We expand the Lindblad operator L, in a orthonormal basis set of system states:

Lo =" ulf)la) (] . (11.76)
ab

I
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Substituting this into the Lindblad equation, we have the following terms:

(ikpi;;)ah = zb: u(bkg,* u(f;/pa/b/ , (11.77)
b
(Liiwp) = ulull o, (11.78)
a’b/
and
(Pﬁ;ik%h = Xb: u(hk,);u(hli)bpaa/ . (11.79)
Y,
By denoting
Zapea = y_uly uld), (11.80)
k

we obtain the Redfield-like equation

d A
apllb =1 I:Hs’p]a,b + Z Koba'v Pa’ty (11.81)
a’b’
with relaxation rates
Kabars' = Zotraw — 2223 Zewew = 2293 Zu (11.82)
' ' 2 [ ' 2 Cc Y

That is a very important relation which has a direct connection with the Redfield
equation and it defines the physical meaning of the correlation coefficients Z,j c4.
Let us consider the population transport from state b to state a and a # b. The rate
governing this process is

Kaapb = Zab,ab - (11.83)

The dephasing rate of the density matrix coherence p, is

1

Kab,ab = be,aa - E Z[an,ca + Zcb,cb] . (11-84)

4
The commonly used expression can be written

_ 1, _
Kabab = ~Vab =3 (7o' + 1Y), (11.85)
where the lifetime of state a is given by the total rate of population escape 7, =

Z#“ Zca.ca and

c

_ 1
Yab = E(Zaa,aa + be,bh) — Zbb,aa (1186)
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is known as the pure dephasing rate. Terms such as Z,, j5 can be taken as complex
numbers, and then j,, might include a Lamb shift of the oscillation frequency.
Note, however, that we must have Z,, ,, = Zb*b'm, S0 Zga,aq isreal and y,p, = 7.

However, this description leaves a lot of undefined “off-diagonal” parameters.
They must be chosen in a specific way to lead to a physically reasonable result.
We thus assume that the Lindblad equation yields the canonical equilibrium dis-
tribution of the isolated system p(°>°) = exp(—f I:IS) at long times t — oo [79]. The
equilibrium exciton populations are then given by P) o exp(—f€,), where ¢, is
the energy of state a, and all off-diagonal density matrix elements vanish: pflobo) =0
for a # b. For the equilibrated state at t — oo the Lindblad equation for all 4 and b
gives

1
0= Z |:Zbc,ac - z Z(éaczdc,db + 5chda,dc):| eXP(_ﬂgc) . (1187)
d

[

This equation is satisfied when the Lindblad operator matrix elements are com-
pletely uncorrelated, that is, Z;p s = 04044 Zapap, thus leading to the secular
relaxation equation which satisfies the detailed balance and the requirement for
the equilibrium to be satisfied. However, that is not the only solution. Let us rear-
range (11.87) in the form

1 1
0= Z [Zbc,acexp(—ﬁsc) — EZCM;J exp(—fe,) — EZCM;J exp(—ﬁsb)] .

(11.88)

A sufficient condition for this equality is obtained when each term in the sum
of (11.88) is required to be 0, which can be satisfied by
Zab,cd _ ch,ba ) (1189)
exp(—feq) +exp(—fec)  exp(—feq) + exp(—fes)

The Lindblad equation determines all other off-diagonal rates responsible for co-
herence—coherence transfer and for population—coherence mixing. Terms such as
Kaapp and Kyp 45 can be calculated microscopically from the Redfield rate expres-
sions. This leads to fixing correlation coefficients {|u,5|2) (a # b).

Additional determination of coefficients is possible for excitons with respect to
the special — ground — state. This state |g) has an infinitely long lifetime and it
is a reference state for all fluctuating coordinates, that is, it is not fluctuating it-
self. Therefore, (u”, ucq) = 0 if one of the indices a, b, c, or d coincides with g.
The Lindblad equation then guarantees that there is no population transfer to the
ground state. However, the coherence decay rates involving the ground state, which
determine the homogeneous linewidth of the absorption spectrum, are as follows:

1

ng,ge = _?ge - ET: , (1190)
_ 1
Vge = 5 Zecgee - (11.91)

2
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11.8 Hierarchical Equations of Motion for Excitons

With this model we are thus able to relate all coefficients of type Ce. . to the
Redfield theory:

Zee,ee = Z?ge , (1192)
Zee’,ee’ = Kee,e’e’ . (1193)
And finally
1 _
Ze/e/,ee = E(Zee,ee + Ze/e/,e/e/) — Yee - (1194)

The exciton concept allows us to suggest the relation between the Lindblad cor-
relation coefficients and the exciton wavefunctions. First note that for correlation
coefficients we can assume that

Z2yea < ZababZed,cd (11.95)

or

Zab,cd = Zab,abzcd,cd Cos(aab,cd) , (1196)

where we define the mixing angle a4 ¢4.

11.8
Hierarchical Equations of Motion for Excitons

Hierarchical equations of motion (HEOM) correspond to a nonperturbative theory
describing the exciton dynamics in the open quantum systems introduced in Sec-
tion 10.6. Because it is a full theory, it is computationally expensive. An additional
complication for excitons is that we assume an independent bath for each molecu-
lar excitation. We therefore have to deal with N bath modes for N molecules denot-
ed as a coordinate Q,,, and we have N hierarchy dimensions. Here we present a
modified HEOM theory usually termed the hierarchical quantum master equation
(HQME) [80]. It is still nonperturbative, but is restricted to the approximate form
of the bath correlation function.

Let us start with the semiclassical overdamped spectral density for the nth
molecule (see Section 8.6):

Yn®

/7 _

n

(11.97)

The fluctuation correlation function of the bath (7.140) for the nth molecule can be
given in the form

_ 1 1 —iwt ~//
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By expanding the Bose—Einstein function up to the (fw) term

! L, + fo (B 11.99
— = — 4 = ) .
1—efo  Bo 12 Olpw)’] ( )
(this expansion corresponds to [0/0] Padé decomposition of the spectrum [81]), we
have

2
Cu(t) = (2%” - %) e " —id,ye " 4 ”y”ﬁ RO . (11.100)

The high-temperature approximation schemes use only the first two terms of this
expansion. Here, all three terms are used and the rest of the correlation function
is accounted for by the Markovian-white-noise residue ansatz [80]. The criterion of
applicability certainly depends on temperature: it was shown in [80] to represent
adequate dynamics when

min {1, (y,)/2s, 60} X 2, (11.101)
where I, ( (V124 (Bya)? + 6]/B, Qs is the characteristic frequency of the

system, and Kn = V6L (Yn)/(BAnYn)-

The HQME for the correlatlon function given in (11.100) is written in the Li-
ouville space as a hierarchy of coupled differential equations for auxiliary density
operators denoted by |p,(t))) [80]:

d N R
33 1Pn(0)) = =iLelpa() n; (7 + 0R) Ion(t)
N R N
+ ) Al on ( Z wlo, () (11.102)
m=1 m=1

where the auxiliary superoperators

ORy = MQQQM (11.103)
and
2
An =i [(2%“" - ﬁlz”) ox — i/lmymé;] (11.104)

are introduced. Here Q%o < [Om,®] (o is an arbitrary operator) is the com-
mutator and 0%e < {Q,,, e} is the anticommutator. In (11.102) |pg(t))) corre-
sponds to the physical reduced density operator, while n is a vector of indices
n = (ny, Ny, ..., ny), and we use the notation n:yrlf = (n,ny,..., 0y 1,...,0y).
All indices of auxiliary density matrices represent the number of vibrational quanta
and are positive numbers [53].

Formally the hierarchy in (11.102) is infinite; thus, the equations are nonpertur-

bative and non-Markovian. Various truncation schemes can be used. The simplest
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11.9 Weak Interchromophore Coupling Limit

one is based on the assumption that all auxiliary density matrices with tier level
L= ZZ=1 ny, greater than the truncation level Ly, are simply discarded. The
truncation level is usually chosen to guarantee convergence of the simulation re-
sults. Other truncation schemes are also possible [53, 82].

Since the HEOM theory is derived as an operator equation and makes no approx-
imation for the bath, it is thus independent of the basis chosen for the solution of
the problem. It can thus capture effects such as exciton delocalization, polaron for-
mation, and collapse of a delocalized exciton onto a single chromophore.

11.9
Weak Interchromophore Coupling Limit

Energy transfer in molecular aggregates in the case of weak resonance coupling
is usually considered within the framework of Forster resonance energy transfer
(FRET) theory. This is a widely employed method that works remarkably well even
in situations where the condition of weak chromophore—chromophore coupling
might be questionable. However, for some applications FRET theory has several
important closely related deficiencies. Namely, since FRET theory is an approach
of the Fermi golden rule type, it gives the population transfer rates but no pre-
scription for propagating the other elements of the density matrix, for example,
coherences. By the same token, FRET theory intrinsically assumes that the excita-
tions are localized on individual chromophores despite their mutual interaction.
The latter deficiency can be overcome by using the modified Redfield theory, but in
this case the former still persists, which renders the description of coherent phe-
nomena impossible.

It is possible, however, to formulate a dynamical description of the whole reduced
density matrix in the weak resonance coupling limit [83]. The derivation is similar
to that of the generalized quantum master equation, except that this time the reso-
nance coupling instead of the system-bath interaction is treated as a perturbation.
Therefore, we split the system Hamiltonian in the following way:

Hs = H. + Hj. (11.105)

Here H, and I:I] denote accordingly the diagonal and off-diagonal parts of the
Frenkel exciton Hamiltonian. In the presence of the bath the reference part of the
total Hamiltonian for the perturbation expansion is taken as

Hy = H, + Hss + Hg , (11.106)
which leaves out the resonance coupling part I:I] as a perturbation. Switching to
the Liouville space notation, we split the total Liouvillian in the same manner:

L=Lo+ L. (11.107)

We first write the solution of the Liouville equation in the usual way using the
Green’s function

W(t) = G(£) W(0) . (11.108)
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We next define the interaction representation with respect to Lo:

Wi(t) = Go(—1t) W(t) (11.109)
and

V(t) = Go(—1)L1G0(1) - (11.110)

Then, using the projection operator technique as introduced in Chapter 9, we get
an equation for P Wi(t) and truncate it at second order in Hj:

%PWI(t) = —iPV(t)PWI(t)—/drPV(t)PQV(r)PWI(r); (11.111)

Here the so-called initial term proportional to Q W(ty) is omitted. To justify this
omission as well as to ensure the maximum quality of the second-order approx-
imation, the choice of the operator P is essential, and it is best dictated by the
physical situation in question. For instance, in the case of optical excitation, we
can assume that the system is initially in the ground state, p = |g)(gl, and the
bath is in the canonical equilibrium, pg, so the total density matrix is factorized
as W(t)) = p ® pp. Then according to the Franck-Condon principle, upon the
excitation the bath part remains unchanged and the system-bath state remains
factorized. In this way the appropriate projection operator reads

PZ = trg(Z)ps , (11.112)

and therefore Q Wj(to) = 0, which eliminates the initial term.
Denoting p(t) = Trg( Wi(t)) and resolving the projectors and commutators (thus
returning to the Hilbert space), we can rewrite (11.111) in terms of p(t):

d A N
—P(thpn = —itra (£ (1)pn) A(t)pn + iB(t)tra (pn Fy (1)) oo — RO

(11.113)

where

t

R(J?) = /dr try (Fly(t) B ()0 ) (1) — trs (B (1)) trs (B ()0 ) ()

[
—trg (A (05(r)ps Fy (1)) + trs (Fy(t)os) a(r)trs (on (7))
(Fy@)atees (1)) + trs (F(2)os ) A()trs (o F (1)

+ B(r)trg (pB ﬁ](r)ﬁ](t)) — p(o)try (pB 131](1)) trg (pB ﬁ](t))] :
(11.114)
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The traces can be evaluated as follows. Taking the matrix element of trg (Fj(t) op),
we obtain the expression

(a|Trp (I:I](t)pg) |b) = Jape'®“'trp(Ga(—1) Gy(t)pB) , (11.115)

where G(t) is the Green’s function corresponding to the Hamiltonians involving
the nuclear coordinate §: Hsp(g) + Hg(q, p). The trace can now be evaluated by
employing the second-order cumulant approximation:

Trg(Ga(~1) Gu(t)on) = exp [—(1 — dus) (g% (1) + go(1))] . (11.116)

where g,(t) is the lineshape function associated with the transition from state |g,)
to state |e,). Thus,

(alTes (F(t)on) b) = Jape s —0—PEEI 800 = [ty (11.117)
Similarly, the larger traces in (11.114) can be evaluated. Then changing the integra-
tion variable in (11.114) to 7/ = t — 7, we can employ the Markov approximation

p(t—1) ~ p(t). Setting ty = 0 (e.g., the optical excitation giving the time reference),
we obtain the equations of motion in the final form:

d
Shas(?) ——IZJM Voeh(t) +1 Y Pac(t) Jen(t)
—Z aced(t)Pab(t) = R7ppq(t)Pcd(t)

- Rdbac(t)Pcd(t) + Rigac(t)Pac(t)] - (11.118)

The relaxation tensor reads
Rabcd(t) = /df[]ab]chade(t’ t— T) - ]ab(t)]cd(t - T)] ’ (11'119)
0

where the auxiliary function is given as
Mabcd(t: T) — eFuhcd(t>r)+iwabt+iwcd7 , (11.120)

and

Fapea(t,7) = —g5 (t) — g5(t) — 87 () — ga(T)
— Oqc [ga(t) —ga(t—17) + gu(r ] + 0ad [ga
+ b [go(t) — go(t — 7) + g5 (1)] — Oba [

t) — ga(t — 7) + g5 (7)]
) —go(t— 1) + g5 (1)] -
(11.121)

—_ —

(
(

Here we disregarded the cross-correlations, that is, assumed g,;(t) = 0 4p84(t)-
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Finally, the connection between the reduced density operator in the interaction
picture p(t) = Trg( Wi(t)) and in the Schrédinger picture p(t) = Trg( W(t)) is given
by the equation

Pab(t) = eiwaht+(1—5ah)[ga(t)+gf(‘)]pab(t) . (11.122)

We thus get a dynamic relaxation picture through the g(t) functions (these are
introduced in Appendix A.2). The bath thus affects not only the excitation in a rigid
frame of excitonic wavefunctions, but the frame itself becomes “flexible.” The bath
renormalized the intermolecular couplings dynamically, which is never captured

by the Redfield equations.

11.10
Modeling of Exciton Dynamics in an Excitonic Dimer

As described in Section 5.3, an elementary molecular aggregate is a molecular
dimer made up of two strongly coupled molecules. It was described in Section 5.3.
Itis characterized by two site energies € and ¢, and the intermolecular coupling J.
We next denote 4 = ¢, — ¢;.

The Hamiltonian of such a system is solvable analytically by introducing the
mixing angle 6 (5.57) so that the exciton eigenvectors are

wel”l weznl _ COS(O) —sin(@)
(welnz 1/)32;12) N (Sin(e) cos(6) ) ’ (11.123)

The Schrédinger equation for the system gives the mixing angle

tan(20) = ZA—] (11.124)

and then the eigenstate energies are given by

A
eL =¢+ 7,/1 + tan?(20) , (11.125)

where 28 = ¢ + ¢,.
To include the relaxation effects we couple each molecular excitation in the dimer
(the excitation energy) to its own phonon bath characterized by the spectral density:

wA
C’w) =2——— . 11.126
(0) = 20— (11.126)
In that case their energy fluctuations are uncorrelated.
We next present simulations of exciton dynamics in this system using several dif-
ferent models described in the various sections in this chapter. This section is thus
devoted to the application to the model dimer. The set of simulation parameters for
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the dimer is as follows. The trial system Hamiltonian in reciprocal centimeters is
taken as

10200 100
( 100 10100) ' (11.127)

This leads to a mixing angle of 6 a 2.6rad. The eigenenergies are 10 000 + 38.2
and 10000 + 261.8. The bath is characterized by 1 = 0.53], which is taken as
approximately 100 fs. These values of the parameters are typical of photosynthetic
pigment—protein complexes [24].

For the initial condition we assume that the molecular dimer is excited by an
ultrashort laser pulse. In that case the pulse bandwidth covers both exciton eigen-
states, so both are excited simultaneously. Such laser excitation prepares the system
in a highly nonequilibrium excited configuration described by the density matrix

p(t = 0) = (82 gg) . (11.128)

We will next follow the exciton dynamics in this system using the propagation
methods described below when this system is either weakly (1 = 0.1]) or strongly
(A = J) coupled to the bath.

Secular Redfield Dynamics The secular Redfield scheme serves as the simplest
approach. The dynamics for the weak system—bath coupling strength are shown in
Figure 11.1. As population and coherence dynamics are uncoupled, we can observe
only exponential monotonous decay of nonequilibrium populations to the equilib-
rium. The coherences oscillate with their native frequencies dictated by the energy
gaps between the eigenlevels. The decay of these coherences is limited only by the
exciton lifetimes and by their pure dephasings. The strong system-bath coupling
in Figure 11.2 leads to faster relaxation and almost overdamped relaxation of the
coherence.

Modified Redfield Theory The modified Redfield theory is intrinsically similar to
the secular Redfield theory, only the transport rates are calculated differently. In
this case in Figure 11.1 the population transfer rates are different; thus, popula-
tions redistribute faster. Note that this weak coupling regime does not induce any
noticeable relaxation in the excited state; thus the rates of the Redfield and modi-
fied Redfield theories almost coincide. In Figure 11.2 the strong coupling case is
shown. We find that the rates in this case are higher and the population dynamics
are faster. This change in rates is induced by exciton relaxation in the excited state.
The coherences propagate in the same way as in the secular Redfield theory as the
coherence is described by the same rates.

Full Redfield Theory The full Redfield theory as described by (11.27) is the most
straightforward approach to tackle the nonequilibrium system dynamics as it is a
direct outcome of second-order perturbation theory. All fluctuations are included
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Figure 11.1 The density matrix dynamics of the dimer with initial conditions as in (11.128)
in the case of weak system—bath coupling strength. “HEOM” means “hierarchical equation of
motion.”

up to second order. In the weak system-bath coupling case the system remains
highly coherent as implied by oscillatory populations and density matrix coher-
ences. After the initial coherent phase, the populations cease to oscillate and ap-
proach equilibrium values monotonically. In this state the coherences are almost
zero. A completely different picture is obtained in the strong system-bath cou-
pling case, where the Redfield equation parameters make the solution diverge. This
demonstrates that the Redfield equation has a limited parameter space of validity. It
must be noted that since the equation is up to second order in fluctuations, the er-
ror of the solution accumulates with time. At second order we have the fluctuation
intensity, which perturbs the system dynamics, proportional to

oo

d.=¢ /C(t)dt , (11.129)

0

where & characterizes the strength of off-diagonal fluctuations in the eigenstate
basis. For the dimer & = 1/2sin*(26), while to estimate the integral we take the
high-temperature limit and get

A,
S = 71 (26). (11.130)

67 ! provides the timescale where the Redfield solution should be trustworthy. Note
that 0. roughly coincides with the homogeneous linewidth of the absorption line.
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Figure 11.2 The density matrix dynamics of the dimer with initial conditions as in (11.128) in
the case of strong system—bath coupling strength.

For the dimer parameters we get

A- (t < AT) : (11.131)

Using the above parameters we roughly have At < 1 for the weak coupling and
At < 0.1 for the strong coupling. In the weak system-bath coupling case the result
is physically feasible also for At ~ 1; however, it should be concluded that it is not
trustworthy without relating it to a particular experiment. That is obvious in the
case of the strong system-bath coupling, where the result diverges for At ~ 0.1.
The secular theories cure this problem; however their result is questionable as well.

Lindblad Dynamics The Lindblad equation allows for the quantum transport
regime where the populations are coupled with density matrix coherences. The
equation maintains the physical density matrix for all times. The Lindblad dy-
namics as presented in this chapter are parametrized with respect to the Redfield
theory: we choose the Lindblad correlation cosine matrix to be [79]

COS(Cey ey epe1) = MaX(Wey e * Wey eqr Wer,es * Weg,er Wer,eq - Wepes) » (11.132)

where

Werer = Y [Cnes Cnes| (11.133)

n

is the exciton overlap integral with condition 0 < w,, ., < 1.
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The Lindblad equation now includes the same transport rates as in the Redfield
theory. Additionally they are tuned so that the thermal equilibrium coincides with
the secular Redfield theory for excitons. This results in the Lindblad equation be-
ing intermediate between the full Redfield theory and the secular Redfield theory.
It thus captures the coherent dynamics as observed in the weak system-bath cou-
pling case (oscillatory population evolution) as well as satisfactory relaxation to the
equilibrium similar to the secular equation. The result remains physically reason-
able in the strong system-bath coupling limit as well. In this case the coherences
are overdamped and the system is driven to equilibrium monotonically. Howev-
er, this construction of the parameters relies on heuristic arguments, so the result
must be understood with respect to a specific experiment.

Weak Resonance Coupling Regime The weak- | theory captures the other limit of
the strong system-bath coupling correctly. In this case when the coupling with the
bath is strong and comparable to the interchromophore coupling J, the theory cor-
rectly reflects the density matrix dynamics since the diagonal bath fluctuations in
the eigenstate basis are included through the cumulant expansion. This part can be
understood as exact provided the diagonal and off-diagonal fluctuations are weakly
correlated. This is in stark contrast to the Redfield theory, which fails and diverges.
The long-time limit is however shifted from the correct thermal equilibrium, but
the initial dynamics is propetly recovered. The finite coherence elements at long
times show that the excitonic basis is no longer the eigenbasis of the solution and
the site basis is more appropriate. Thus, in the long-time limit the system relaxes
to the site basis equilibrium.

HEOM (HQME) Dynamics The HQME method is a way to compute the aggregate
dynamics without approximations at any temperature. However, the hierarchy is
infinite and additional constrains are included with respect to the fluctuation cor-
relation functions. It thus correctly includes the quantum transport effects as well
as realistic coherence dephasing rates. In Figures 11.1 and 11.2 we show the cas-
es of weak and strong couplings using the HEOM method. In the initial time it
reflects the coherent dynamics, which transform into the dissipative ones. In Fig-
ures 11.1 and 11.2 only the short-time dynamics are shown. However, in the long-
time limit, it can be shown that coherences in the strong system-bath coupling
case do not relax to the equilibrium. This shows that the weak- | theory becomes
more accurate in that limit and the site basis is more appropriate especially in the
strong system—bath coupling limit. The exciton states thus decay and the dynamics
should be described in the site basis.
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11.11
Coherent versus Dissipative Dynamics: Relevance for Primary Processes in
Photosynthesis

An essential step in developing a description of exciton relaxation in molecular
aggregates is to make the right approximations. The most sophisticated HEOM
theory is by no means the best tool to describe few-chromophore systems. Howev-
er, it is an essentially exact description and its ultimate application amounts to the
full solution of quantum dynamics. It thus scales badly with the system size. For
instance, if the system consists of N chromophores and we assume that each site
is coupled to an independent bath coordinate, we have to use an N-dimensional
space for hierarchy of equations. If additionally we take M terms into expansion
of the Bose—Einstein distribution with respect to the temperature, we add M more
dimensions in the hierarchy. The problem becomes hardly tractable on a computer
even for moderate system sizes (approximately 10). However, with use of a multi-
core supercomputer, aggregates as large as N = 36 have been processed [84] us-
ing the HEOM. Current applications are mostly limited to the overdamped model
of the bath, while the colored bath is theoretically possible in HEOM ([85]. Alter-
native exact methods including an arbitrary bath spectral density are available as
well [71, 84, 86-89]. These are not considered in this book because of space limita-
tions.

As the HEOM is numerically exact, it is now taken as a reference by compar-
ing the approximate methods. As we showed, the approximate methods for density
matrix can be used in specific parameter regions. For instance, in the case of weak
system-bath coupling, the full Redfield theory is very suitable at short times. As
the system reaches the incoherent relaxation phase, the secular theory can be used
to propagate the populations to the thermal equilibrium. Surprisingly, the simplest
secular Redfield theory gives proper relaxation timescales. As it is simple to im-
plement and is very efficient in simulations, it is the best choice for estimating
qualitative behavior. In the case of strong system-bath couplings, the weak- | the-
ory gives the correct coherent dynamics phase and encapsulates the formation of
polarons.

Special attention has to be paid to the Lindblad and modified Redfield theories.
The Lindblad equation of motion guarantees a physically proper density matrix for
all time delays; however, it does not provide a recipe to obtain the relaxation rates
or to define the correlation coefficients using spectral densities of the harmonic
bath. The method to relate the Lindblad parameters with the Redfield rates pre-
sented in this book gives a qualitatively important result as it allows us to capture
the short-time coherent dynamics and the long-time dissipative dynamics correct-
ly. The modified Redfield scheme is “an upgrade” of the secular Redfield theory,
and promises better exciton transfer rates. However, as the theory relies on the ex-
citon basis, its second-order approximation in the off-diagonal fluctuations limits
the rates again to the weak coupling regime since in the case of strong system—
bath couplings (strongly coupled systems) all fluctuations are large, become corre-
lated, and cannot be treated at second order. The modified Redfield scheme is thus
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trustworthy when all fluctuations are weak or when the chromophores are weak-
ly coupled. However, the weak- | theory may be a better choice in that case as it
captures dynamic wavefunction relaxation.

The theories presented were demonstrated for a simple pair of two-level sites.
The results and conclusions obtained can be extended to larger systems since the
excitonic dimer is the simplest system having all ingredients as in larger systems.

Recent multidimensional spectroscopy experiments, which we describe in Part
Two, done primarily on the FMO aggregate [24, 90] and later on other molecular
aggregates, revealed a broad range of coherent processes that take place in the fem-
tosecond time domain [62, 72]. As these experiments initiated the discussion of the
importance of quantum coherent effects in the biological functioning of the light
harvesting complex in photosynthesis, this initiated a revision of the quantum re-
laxation theories with a strong emphasis on the quantum coherence [68, 69, 71, 73].
According to estimations [91] the strongest ] coupling in FMO aggregates is on the
order of approximately 100 cm ™!, while the homogeneous absorption linewidth is
approximately 60 cm ™. In this case the exciton concept should hold and the the-
ories which are based on the weak | coupling regime should be avoided. The the-
ories which include coherent excitons are thus preferable. For instance, the full
Redfield theory should be appropriate to account for the damped evolution of the
excitonic coherences. The modified Redfield theory includes some additional con-
cepts compared with the full Redfield theory. For instance, the correlations of the
diagonal and off-diagonal fluctuations are included approximately in the modified
Redfield population transport rates; however, this addition does not guarantee bet-
ter agreement with experiments since a lot of model parameters are not well de-
fined and are usually fitted by indirect experiments.

We note that the simulations of FMO aggregates based on the Redfield theory
have never been able to reproduce the long-lived quantum coherence beats ob-
served in the seminal two-dimensional spectroscopy experiment. Recently it has
been shown that the observed spectral beats in the two-dimensional spectrum re-
flect the molecular vibrations, which have been ignored before [92-94]. The latter is
not surprising knowing that the vibrational progression is very weakly expressed in
the FMO absorption spectrum, while it may influence the energy transfer rates [95].
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Introduction

Electronic spectra of molecular aggregates are usually attributed to Frenkel-type
excitons, which have been described in Chapter 5. Such attribution is based on
a significant shift and narrowing of the absorption band in comparison with the
absorption bands corresponding to separate molecules. It is noteworthy that the
resonance inter-molecular interaction is the main parameter resulting in delocal-
ization of the exciton states defined by a linear superposition of the excited states
of the individual molecules.

The exciton phenomenon was well-resolved as early as 1936 when spectral
changes of the pseudosocianine dyes in water solution were observed, while
changing the dye concentration [96, 97], and later on in molecular crystals and
polymers [23, 25, 27]. Excitonic features are also disclosed in stationary and time-
resolved spectra of various photosynthetic pigment-protein complexes [24] that
start the “cycle of life.”

To harvest the solar light efficiently, photosynthetic organisms are equipped with
pigment-protein antenna complexes. These complexes are involved in the initial
stage of photosynthesis, starting with the absorption of the solar light by the pig-
ment molecules and followed by the transfer of the accumulated energy to the re-
action center, where this energy is stabilized as a chemical potential [98, 99]. In the
latter process of the energy accumulation the charge transfer states are involved.

Variations of protein environment at different pigment molecules introduce dis-
tribution of transition energies and determine the timescale of their changes. Such
interaction of the pigment molecules with their environment is usually qualified in
two limiting cases corresponding to the static and dynamic disorder of their tran-
sition energies. The static disorder corresponds to the slow rearrangement of the
environment in the vicinity of a particular pigment molecule while the dynamic
disorder reflects the opposite limiting case corresponding to fast vibrations, thus
determining the exciton dephasing and restraining the coherence in exciton trans-
port. The entire set of such vibrations might be considered as the bath, while inter-
action of these vibrations with molecular excitations can be treated perturbatively.
According to such a theoretical scheme the exciton dynamics can contain both co-
herent and incoherent behavior.

As elementary excitations carry no charge or spin, only energy, they cannot be
tracked by electric measurements extensively used in semiconductor electronics.

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
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Spectroscopic methods are then efficiently applied. The traditional measurements
include absorption, fluorescence (steady state and time resolved) and pump-probe,
and various other types. In addition to the conventional spectroscopic methods
used for studies of various molecular aggregates, the four-wave mixing mea-
surement provides the set of simple nonlinear techniques available for isotropic
systems. In the time domain these are performed by applying either two puls-
es (pump-probe) or three pulses (homodyne three-pulse photon echo), or four
pulses (coherent heterodyned signals) to generate and detect the desired signal.
The four-wave mixing signal is generated by the induced third order polarization,
which is a parametric function of the delays between the adjacent laser pulses. The
polarization dynamics with respect to these parameters reflect a wide variety of
ultrafast molecular processes. Recent development of coherent two-dimensional
photon echo spectroscopy disclosed the possibility to estimate the time scale of
the exciton decoherence. Thus, two-dimensional spectroscopy is already a key tool
demonstrating a complex pathway network of the energy transfer in various pho-
tosynthetic pigment-protein complexes, molecular aggregates, and polymers. It is
evident that the interaction of electronic excitations with intra- and inter-molecular
vibrations causes a disruption of the phase relationship between excited states of
the molecules constituting the exciton wave functions. This type of interaction has
a distinct influence on the coherence in the exciton dynamics and plays the domi-
nant role by determining the exciton transport pathways. Thus, nonlinear optical
techniques performed using ultrashort laser pulses are capable of probing various
dynamical phenomena on microscopic/nanoscopic scale.

In this part of the book we discuss basic theoretical approaches for the descrip-
tion of various spectroscopic observables. We illustrate the basic steps which take
from the formulation of the quantum mechanical problem in terms of equations
of motion as described in Part One of this book to the formulation of the spectro-
scopic signal in terms of the response functions, which is the basis of Part Two.
Indeed, most of the spectroscopic experimental observations can be well described
in terms of the response theory by treating the excitation light perturbatively. The
basics of the semiclassical response theory is presented in Chapter 13. Theoretical
principles of the linear spectroscopy are presented in Chapter 14. The theoretical
basis applicable for the description of the nonlinear spectroscopy is presented in
Chapter 15. The 2D coherent spectroscopy approach is discussed by analyzing first
the simple model systems (Chapter 16) and afterwards by considering the spectral
changes of the photosynthetic pigment-protein complexes (Chapter 17). The basics
of the single molecular spectroscopy is described in Chapter 18.
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13
Semiclassical Response Theory

Spectroscopic experiments are usually described using the semi-classical approx-
imation [26]. According to this approximation the incoming excitation fields, the
outgoing signal field are assumed to be classical (electric) fields, and the molecular
system is considered to be a quantum object. This scheme applies to most exper-
imental situations, unless the quantum properties of light are explicitly used or
investigated, for instance, by considering entangled photons or quantum photon
statistics measurements. Because the lasers and coherent fields are used for the
light generation in most experiments considered in this book, classical description
is an appropriate approximation.

In the semiclassical model, the experiment is formally divided into two stages. In
the first stage a quantum system interacts with the incoming field. As discussed in
Section 2.4.1, this interaction is described by the polarization (or transition dipole
moment) operator. The system gets displaced from the equilibrium due to the in-
fluence of the external field, and thus, creates the nonequilibrium time-dependent
polarization. In the second stage the expectation value of the induced polarization
becomes a source of the signal field. This stage can be treated as a problem of the
classical electrodynamics, and it can be demonstrated by the Maxwell equations as
demonstrated in Section 2.2.

Assuming that the polarization is ultimately originating in the microscopic quan-
tum system, we need to consider the dynamics of this quantum system influenced
by the external field. Thus, we have to deal with a coupled problem of time evo-
lution of the fields E(r, t) and the system state W (t). The whole process can be
described by the following three Maxwell-Liouville equations:

19 9
VxVxE(r,t)—i—;ﬁE(r, t) = —/Aowp(r, t), (13.1)
P(r,t)=Tr (i)(r)\fv(t)) , (13.2)
IW i oA .
0 (At ), W] (13.3)

They have the following meaning: the first equation is the relationship between
photo-induced polarization P(r,t) of the system and the outgoing electric field.
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This expression will be greatly simplified by assuming the so-called phase-matching
experimental geometry, which will be discussed in Section 13.3.1. The second equa-
tion is the definition of the physically observable polarization as the trace of the
product of the polarization operator and the density matrix. The third equation
determines the time evolution of the system density matrix under the influence
of the excitation field E;(r, t). Here I—AISc is the semi-classical Hamiltonian, which
describes the quantum system under the influence of the classical electric field as
an external force.

In the next few sections, we will describe the physics behind these three equa-
tions. One straightforward step which we can perform here is that (13.1) can be
rewritten in a form:

—V2E(r, t) + la—215(r t) = —yoa—ZP(r t) (13.4)
' T2 CIZ '
which is valid for transverse radiation fields, E = E (in other words, V - E = 0).
This assumption usually applies to the dielectric medium as we study it here.

13.1
Perturbation Expansion of Polarization: Response Functions

We will now assume that the sample is made of some molecules, which are much
smaller than the wavelength of light. In this case, the molecule-field interaction
is assumed to be well described as a dipole-field interaction. The Hamiltonian de-
scribing the whole problem is then divided into the following terms:

H = Hs + Hp + Hsp + Hint = Hyar — it - E(1) . (13.5)
Here, Hg is the molecular (or system) part of the Hamiltonian, containing all de-
grees of freedom (or states) of the molecular system, which have to be included
explicitly. They are usually the electronic states that can be directly manipulated
by light, but sometimes they might also include some selected vibrational or other
levels. The second term, Hp, represents the bath, causing dephasing and energy
relaxation in the system. Hsp corresponds to the interaction between the system
and the bath. These three terms of the Hamiltonian constitute the material part
of the system, Hypar. The last term, Hiy = —jt - E(t), is the dipolar system-field
interaction (see Section 2.4).

The dynamics of the system is more conveniently described using superopera-
tors, which were already introduced in Section 4.5.3 where they proved to be use-
ful in deriving equations of motion of the reduced density matrix. Here the prob-
lem is of a similar complexity, and the abbreviation of the commutators (those
from (13.3)) into superoperators will be of great convenience. We use the material
Liouville superoperator and interaction superoperator
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LintA = —%[/),A]E(t) = —VAE(t), (13.6)

where V is the polarization (or transition dipole moment) superoperator. For the
sake of simplicity, we introduce E(t) = n- E(t) and it = n - fi, where n is a vector
of unit length and determines the direction of the transition dipole operator. The
equation of motion for the total density matrix W (t) is then given by

AW (1)
ot

This equation cannot be solved exactly. The external field is a parameter under
control by experimentalists, and usually it is weak in the sense of the perturbation
theory. In other words, the spectroscopic signals can be sorted out by the power
dependencies on the external perturbation. We will thus treat the field-system in-
teraction perturbatively, while the material part will be taken as a reference, for
which the dynamical problem can be solved, at least formally. This scheme of the
time-dependent perturbation theory is typical for most of the spectroscopic calcula-
tions. At the next step we use the interaction picture, which represents the problem
in “rotating frame” corresponding to the field-free evolution of the system. The ref-
erence material evolution operator is defined as

= <AL W (t) — iLin W (1) . (13.7)

Unar(t) = exp(—iLomatt) - (13.8)
We transform the system density operator into the interaction picture:

WO (t) = Ul (1) W (). (13.9)
and we get accordingly a new equation of motion:

dW O (1)

T V() WO () E(t), (13.10)

where V(t) = u;;at(t)vumat(t) is the polarization superoperator in the interaction
representation. This expression can be formally integrated:

t
WO () = W (k) +1i / dev(r) W (7) E(7) . (13.11)
to
By repeating the iteration we obtain an infinite series:

W(I)(t)

o
2
iy
=)
-

t T
+i* /dr/dr’V(r)V(r/)W(l)(r’
to to

+1? /dr /dr’/dr”V(r)V(r’)V(r”) WO (z")E(r)E(T)E(r”) + ... (13.12)
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13 Semiclassical Response Theory

In the same form we can write the induced polarization. Taking the expansion:
P(t) = PO(t) + PO(t) + PO(t) +... (13.13)

and using the general expression for the polarization expectation value in the
Schrédinger picture:

P(t) = Tt [/2 \?V(t)] (13.14)

we can now write an expression for an arbitrary order of the induced polarization:

t Tn 72
PM(t) = /drn/drn_l.../drlE(rn)E(rn_l)...E(rl)
to to to

x VT [/Qumat(t)V(rn)V(rn_l) V(UL () v?/(to)] . (13.15)

Here, from a pure mathematical point of view, the operator jt inside trace is not
appropriate as all other quantities are superoperators in the Liouville space. How-
ever, we interpret this notation as (read from right to left): take the density matrix
W (to), map it to the Liouville space, apply all Liouville space propagators U, and
interactions V until we reach /i; then map the result back to the Hilbert space and
act on the left by the operator /.

We now make an assertion that the optical field is turned on at time t = 0, so
at tp < 0 the system is in the equilibrium state. In the equilibrium the system
state is preserved under the time evolution. We denote W (0) = Peq is the time-
independent equilibrium density matrix. We also introduce time intervals between
interactions instead of absolute interaction times and make a corresponding sub-
stitution in the integral, (13.15). This will lead to an expression where we integrate
from zero to time t — #,. The absolute starting time t, is arbitrary as long as it
is before the light arrives, and it can, therefore, be formally set to ty = —oo. The
integration thus goes formally to infinity which is sometimes convenient for calcu-
lations. The polarization then reads as:

oo o0 o0
PM(t) = /drn/drn_l.../drls(”)(tn,tn_l,...,tl)
0 0 0

xEt—1,)E(t—1n—Tu—1)...Et—Tp—Ty—1—...—11),
(13.16)

where

Sty ta—1, ..., t1) = i"Tt [ildimat(T) Viinat (Tn—1)V - - - Unmar(T1) Ve |
(13.17)

is the nth order response function of the system.
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13.1 Perturbation Expansion of Polarization: Response Functions

The optical field and the polarization are vector quantities. The response func-
tions, hence, are tensorial quantities. For instance, the first order response function
S is the second rank tensor Sl(,lz)l,l connecting three incoming components of the
optical field E,, with the outgoing component of the induced polarization P,,. In
most of the cases these properties are not relevant since simple optical field con-
figurations are realized; for example, all incoming fields are collinear and linearly
polarized, and their electric vectors are all parallel, while the sample is homoge-
neous. In this case the tensorial properties can be disregarded. We will emphasize
the tensorial properties when required.

The first order response function is given by:

SM(t1) = iTr {Alhmar (1) Veq} = hTr{uU(tl)[u Peg] UT(H)} ,  (13.18)

Switching back to the Hilbert space it can also be given through a time correlation
function of the polarization operators in the interaction representation:

$0) = 200) 1)~ 0] . (13.19)

Ji(t) = TR0V} = ((1)2(0)) - (13.20)
The linear response function is responsible for such effects as linear absorption,
circular dichroism, and so on, as we will show in detail later.

If the optical experiments are performed on liquid state solutions, the observable
molecular ensembles include all possible orientations of the relevant quantum sys-
tems with respect to the laboratory frame. As will be shown later in Section 15.2.6
the second order response is zero for such ensembles of molecules, so that the next
contribution to the optical response is the third order response function, which is
related to the third order polarization P().

From (13.16) and (13.17) we can write down the expression for the third order
polarization:

) oo
pe =/dt3/dt2
0

XE(t—t3)E(t—t3—tz)E(t—t;—tz—tl), (1321)

dt; SO (t5 ) t1)

o"\g

where the response function is given by:
SONt3, 1y, t1) = DT { Hallmat (£3) V3lmat (£2) Valdimat (£1) Vi Peq | - (13.22)

Expanding the commutators we get:
S\ 3
o) =(:
SP(ts, 1y, t1) = (g) 0(1)0 (t2)0 (t3)

x> (Ralts, ta, t1) — Ry (t3, 1, 1)) (13.23)

a=1
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13 Semiclassical Response Theory

where the four terms in the Hilbert space are given in the form of the four-point
correlation functions:

Ri(ts, ty, t1) = Tr {a(t1)t(tr + t2)it(tr + t2 + 13)2(0)Peq) (13.24)
Ry(ts, t, t1) = Tr {@(0)it(t1 + t2)ii(t1 + t2 + t3)ft(t1)Peq) (13.25)
Ry(ts, t, t1) = Tr {@(0)ia(tr)t(tr + b2 + t3)it(b1 + t2)Peq) (13.26)
Ra(ts, t2, 1) = Tr {ft(tr + t2 + t3)it(t1 + 12)(t1)2(0)Peg) - (13.27)

Heaviside functions in (13.23) emphasize the principle of causality: as it is seen
in (13.21), the third order polarization at time ¢ depends on the electric field of
earlier times. In other words, an electric field in the past (a cause) determines the
polarization in the present time. If any of the arguments of the system response
function is negative, the function must be zero. One can also notice that the sys-
tem response function is always real. It is clear from the physical definition, since
the polarization is a real observable quantity and has a corresponding hermitian
quantum mechanical operator whose expectation value is always real. We have also
used the fact that the operators inside the trace can be cyclically permuted.

The full set of response functions contains all properties of the observable sys-
tem relevant to all possible optical measurements. The response function contains
many contributions, for instance the nth order response function has 2" terms
due to the commutators. As we show later, due to high frequency of the laser field,
resonant conditions can be established and only terms with oscillation frequen-
cies equal to that of the laser field can be retained for a specific measurement. The
number of relevant contributions for specific experiment reduces significantly. The
polarization is found to oscillate with frequency, or the set of frequencies, similar to
the excitation laser field. The oscillatory polarization then generates the new opti-
cal field as the oscillating dipole in classical electrodynamics [3]. The detector then
measures that new field. In the coming chapters we apply this theory to specific
optical experiments.

13.2
First Order Polarization

The first order polarization is tightly related to the simplest spectroscopic experi-
ments. The best representative of the corresponding experiment is the linear ab-
sorption measurement, which we study in detail in the next chapter. We introduce
the main ideas in this section.

13.2.1
Response Function and Susceptibility

The crucial quantity in the theory of linear absorption is the linear polarization
P (r,t). Tt is (by definition) linearly proportional to the electric field E. As indi-
cated in Section 13.1 it can depend on the field at other locations and at previous
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13.2 First Order Polarization

times. Thus, the most general relation between the two quantities can be described
in the form of a combined space-time convolution [26]:

o0
PO¢(r, t):/dr’ f d'sWr—r, t —tE(r,t), (13.28)
14 —0o0

where we require the response function to be identically equal to zero at time
t—1t’ < 01in order to allow only the past values of the field to influence the polariza-
tion at the present time. This means that §")(r, t) is proportional to the Heaviside
step function 6 (t). The boldface character here denotes the tensor character of the
response function. We will restrict ourselves to isotropic materials and the linear
response function will be represented by a scalar quantity S(!(r, t)

SOty = sVt T , (13.29)

where T is a unity tensor of rank 2 with respect to the electric vectors of the
incoming field and of the induced polarization.

In the Hamiltonian (2.110), the material can be viewed as an ensemble of identi-
cal independent systems interacting with the incoming electric field E. The space
dependence of S, therefore, has the form of a spatial (r) function, and will be
omitted in further discussion. For a given point in space, the relation between the
polarization P(t) and the external field E(t) is given by:

P(t) = / dt/S(l)(t—t/)E(t/)=/dt15(1)(t1)E(t—t1), (13.30)
—0o0 0

where we used the substitution t; = t — t'.
It is often advantageous to work with Fourier transformed quantities (see Ap-
pendix A.5) such as, for example,

oo

E(w):/th(t)e“”, E(t):% dw E(w)e " . (13.31)

—00

In the frequency domain the nonlocal relation, (13.28), turns into a local relation:
oo
PY(w) = SV(w)E(w), SWV(w)= / dt SM(p)elv?t . (13.32)
—0o0

In the classical electrodynamics we introduce the linear susceptibility by the rela-
tion:

PM(w) = eox(w)E(w), (13.33)
from which it follows that:
Lo
x(@) = — S (w) . (13.34)
€0

The Fourier transformed linear response function is (up to a constant) equal to the
linear susceptibility.
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In(w) I(w)
(a) h
I(z) ‘
IO |

(b)

Figure 13.1 Scheme of the linear absorption experiment. (a) Light of certain frequency and
intensity lo(w) is sent through a sample of the width h and its diminished intensity /() is
measured. (b) The light intensity as a function of the position z.

13.2.2
Macroscopic Refraction Index and Absorption Coefficient

In spectroscopy the spectral content of radiation is of highest interest. Often we ac-
tively send radiation with a known spectrum through a given macroscopic sample
of matter containing a molecular system of interest. Then we measure the effect
of the matter on the radiation (for example, changes in intensity), trying to deduce
the properties of the investigated molecular system. The transmittance or the ab-
sorbance can thus be measured.

One of the simplest and most fundamental spectroscopic experiments is the
measurement of the linear absorption coefficient i, (w). It is based on the Lambert—
Beers law which states that the intensity of light passing through the material, I(),
decreases exponentially with its thickness h. The absorption strenght can vary with
the light frequency w, and thus the law can be given by:

I(w) = Ip(w)e @@ (13.35)

A simple scheme of the absorption experiment is depicted in Figure 13.1.

Now we will relate the linear susceptibility with the linear absorption coefficient.
We are interested in propagation of the electric field E(r, t) through a medium with
no free charges. This situation is described by (13.4). In vacuum (where P(r,t) =
0), any function of the argument s - r — ct, where s is some unit vector, is a possible
solution of (13.4). In particular, plain waves E(r, t) = e Epe " '@*Hi@/esr 1 c c. areits
solutions. The vector (w/c)s pointing in the direction of the plain wave propagation
is called the wave vector, and it is usually denoted by k = ks, k = w/c. If we
assume a slowly varying envelope £(t) instead of constant E, (13.4) will be still
approximately satisfied as long as |0/9tE (t)| < w&(t).

Inside a dielectric material, we might look for a new solution, again in the form
of a plain wave with a slowly varying envelope, with an additional degree of freedom
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to account for changes in the spatial phase factor. The wave vector magnitude k will
thus be allowed to depend on w in a more general way than just linear. However,
we still assume that k(w) is real. We will start with the electric field in the form of
a single beam with a given carrier frequency. Hence, we use the following ansatz
for the positive frequency component (the negative part is complex conjugate):

EM)(r,t) = e&(r, t)elkl@)sr—ior (13.36)

PP (r, 1) = eP(r, t)elt@)sr—iot (13.37)

Let the vector s point along the z axis. We might, therefore, replace r - z = s-r
and reduce the spatial derivative to a derivative in z only, V2 — 8%/0z2. We neglect
all time derivatives of both envelopes (of polarization and field), and we do the same
with the second derivative of the field envelope according to z. We expect that some
weak absorption will take place and consequently the changes of £(r, t) along the z
axis are allowed. The wave equation, (13.4), then yields:

ezt i (k O\ gz = B 13.38
P (z,)—l—z((w)—W) (z,t) = > (z,t) - (13.38)

From the imaginary part of (13.38) we have:

Pz, t)
&(z, t):| '

2

0]
k?(w) — == pow’Re |:

(13.39)

According to (13.33) the ratio (P(z,t))/(E(z, t))/€o at the given frequency can be
identified" with the susceptibility y(w). We introduce the real and imaginary parts
of the susceptibility such that y(w) = y'(w) + iy”(w). By defining the refraction
index via wn(w)/c = k(w) and using the relation ¢? = 1/eou¢ we arrive at:

no) = 1+ x (o). (13.40)

The real part of the linear susceptibility, therefore, determines the refraction index
n(w).
Taking the real part of (13.38) we obtain:

i6’(2’,1&) =

oy ImP(z,1) . (13.41)

_260n(w)c

or multiplying with £(z, t) for the field intensity we get:

d
—I(z,t) = —

oy n(w)cx”(w)l(z, ). (13.42)

1) Strictly speaking, the ratio of the polarization and field is proportional to the susceptibility
only in the frequency domain. For slowly varying envelopes, however, it can be assumed to
be approximately valid also in the time domain because the field is assumed to be close to
monochromatic, having just one frequency component.
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13 Semiclassical Response Theory

The absorption coefficient k,(w) describing the exponential decay of I(z,t) is,
therefore:

Ka(w) =

7

KA (13.43)
A typical linear absorption experiment is performed with a weak monochromatic
continuous wave (CW) field and the polarization P(z,t) can be identified with
its linear component P (z, t). The absorption coefficient «, of (13.43) then cor-
responds to the linear absorption coefficient. In principle, however, the validity
of (13.38) is not restricted to the linear polarization and one can describe the
intensity-dependant non-linear absorption.

13.3
Nonlinear Polarization and Spectroscopic Signals

We shall now generalize the discussion already made for the linear spectroscopy;
that is, the relation between fields, polarizations and response functions, for the
case of nonlinear process, of so-called N-wave mixing process.

13.3.1
N-wave Mixing

In (13.36) and (13.37) we have assumed that the electric field is composed of a
single beam traveling in a single direction. Now let us consider a more general
excitation by N — 1 fields
N—1
E(r,t) =) e,a(r, t)e* ™" e (13.44)
n=1
From (13.15) we know that the mth order polarization will depend on the prod-
uct of m fields of the form of (13.44), and can thus contain all possible combi-
nations of m available wave vectors k; = +k; & k, &= ... Some of these com-
binations yield wave vectors different in direction from wave vectors of the inci-
dent light. And a corresponding new field (wave) is generated in the sample. The
most prominent methods used in the nonlinear spectroscopy are the four wave
mixing (FWM) methods where three fields with wave vectors k4, k; and ks are
used to generate field into a fourth new direction. An arbitrary configuration from
+ky+ k)£ k; can be measured in an experiment. To account for this new field, our
procedure of calculating electric fields has to be slightly modified. Instead of (13.36)
we have (13.44), and (13.37) will be replaced by the third order polarization compo-
nent with the desired wave vector k; and carrier frequency w; that is with

PO (r, 1) = ePO)(r, t)elksr—iost (13.45)

We have chosen to look at the (+) component of the polarization, but the third or-
der polarization apparently has both (+) and (—) components. In the next step we
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insert our new expression into the wave equation, (13.4), and obtain an equation
analogical to (13.38). We split the total field into a part solving (13.38) with the lin-
ear polarization on the right hand side and the expected third order field E®(r, ),
which will be generated by the third order polarization. Thus, we get equation ana-
logical to (13.38), but containing purely the third order quantities.

We shall not forget that the third order field E® generates its own polarization
that causes its absorption and refraction. Since the third order field itself is weak
and the sample is usually optically thin, we can stay to the first order with the
description of its absorption, and denote the slow varying envelope of the first order
polarization induced by the third order field by PUB)(r, t).

Another important point is that due to the dispersion, the third order electric
field might be generated into a direction k different from k,. Hence, (13.38) leads
to

0 i w?
<0 - _ 3) _
Bzg (z,t) + 5 (k(w) —k(w)cz) EV)(z, 1)
s 02
_ 0T (pap) 3) iAk-sz
2k(w)eoc? (P2, 1) + POz ne™*>2) . (13.46)

The absolute value of the wave vector k(w) can be assumed to satisfy (13.39) with
the first order polarization P13 only, so that we could cancel its real part. Ignoring
the reabsorption for now, we get from (13.46)

0

By =i
0z (z:9) 12n(a))eoc

L pO)(z, t)eibksz (13.47)

Integration of (13.47) in a simple box geometry, Figure 13.2, with initial condition
EBP(z = 0,t) = 0 can be easily done. Let us assume that the thickness of the
material sample in the direction s of the third order field propagation is h and let
us set the origin of z at the start of the sample. The integration of (13.47) yields

w O g, SSIUAKR2) a2 )

Ok b =i
e ) = e (Akh/2)

(13.48)

When h — oo the function sin(Akh/2)/(Akh/2) — 6(Akh)and thus the function
has a sharp maximum at Ak = 0. In other directions the signal becomes signifi-
cantly weaker. If we measure the third order signal in a phase matching direction,
such as kg, the third order field at its exit from the box of the thickness h reads:

EO(h,t) =1 PO (t)h . (13.49)

n(w)eoc

In most of the spectroscopic investigations we are not interested in absolute values
of the nonlinear signal. Rather, we are interested in its frequency domain profile or
relative time dependence. Often we can neglect the change of the refraction index
in the spectral region of the experiment, and so the spectroscopically significant
dependence of the generated field on the polarization is reduced to a change of
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ky ks = —ki + ko + k3
v

>

_________ ko

T

kS/ViCIV ______ \\\*kjl

Figure 13.2 A two-dimensional representa- wavevector combinations (only —kq+k; + k3
tion of the geometry corresponding to the is depicted). The local oscillator field with
four-wave mixing experiment. The incoming wavevector ko = ks is added corresponding
electric fields with wavevectors k1, k3 and to the heterodyne detection scheme.

k3 generate nonlinear signals in all possible

phase by i and a distortion of the line shape by factor w. Thus, the main result of
this section is that the slowly varying envelope of the nonlinear signal reads:

EB) ~ iwPP(1) . (13.50)
From here it is obvious that £(")(t) is directly related to the response functions:
EM(t) ~iSN(t, ty—y, ..., 1), (13.51)

an approximation which works well in the limit of ultrashort excitation pulses, as
we will show in detail in Section 15.1.4.

13.3.2
Pump Probe

As an example we briefly introduce here the pump-probe experiment. Later we
make quantitative relation with the response function in Section 15.3.2.

The pump-probe experiment is one of the standard or “classical” nonlinear ex-
periments performed with short light pulses. The scheme is shown in Figure 13.3.
Quantitatively the experiment can be understood as differential measurement of
absorption. In this scheme two measurements of absorption of a probe laser pulse
are performed. The first measurement reads out the absorption of the probe in
the sample, that has been excited in advance by another short pump pulse. The
pump pulse is responsible for creation of a nonequilibrium system state. This mea-
surement yields absorption A4 . The second measurement performs the regular
measurement of the probe pulse absorption A, as the reference. The pump probe
measurement corresponds to the difference

App = App — Ay (13.52)

As both absorption measurements involve linear polarization, the non-linear part
is highlighted in pump-probe.

The pump probe can be designed in different representations. The pump pulse
can be tuned to a specific system resonance, while the probe can be tuned to the
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probe T pump

— : : ~— d Ap+\

probe App = Apy — A
A A
(a) ,
Pump excitation First Second Pump-probe

measurement measurement

6RO 670 67 €6

Figure 13.3 The scheme of a traditional pump probe measurement (a). Transitions in the en-
semble of three-level molecules are shown in (b). ESA — excited state absorption, ESE — excited
state emission, GSB — ground state bleach.

same or different resonance: the pump-probe intensity as a function of the delay
time can then target excited state decay or transfer. In another setup the pump
can again excite the specific resonance, but the absorption spectrum of the result-
ing nonequilibrium system can be measured in a broad frequency interval using
white-light probe. This measurement yields correlations between various system
resonances. In a third setup we can assume a broad band excitation, broad band
detection, and we can imagine a correlation between the pump frequency and the
probe frequency at a predefined delay time. Thus, the pump-probe is very versatile
technique to target nonequilibrium system resonances and their dynamics.

The pump-probe experiment can be sufficiently easily visualized in terms of tran-
sitions between energy levels of the molecules under consideration as shown in
Figure 13.3b. Initially the sample resides in the ground state. So, the regular ab-
sorption measurement detects all possible absorption events from the ground state
into the upper energy levels, and thus the regular absorption spectrum is drawn.
When the sample is affected by the pump pulse, some constituent molecules are
resonantly transferred into their excited states. The consequent measurement of
the probe absorption records fewer transitions from the ground state — this effect
is termed as the ground state bleach. However, the measurement also records in-
duced emission from the excited states (often termed as the stimulated emission or
the excited state emission) and the absorption into even higher-lying excited states of
the nonequilibrium molecules. This is termed as the induced (or the excited state)
absorption, respectively. These processes introduce new bands into the pump probe
spectrum as compared to the linear absorption.

In light of (13.50) the field measured in pump-probe is o iwP®(t). Below we
describe the electrodynamic picture of the pump-probe measurement. From the
point of view of the detection of the time domain polarization, the main differ-
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13 Semiclassical Response Theory

ence between absorption described in Section 13.2.2 and the FWM described in
Section 13.3.1 is that in the absorption, the new field component generated by po-
larization interferes with the original field, while in our case of the FWM it travels
unaffected in its own direction. In the pump-probe the signal is emitted in the
same direction as the probe pulse. We can imagine a third order polarization gen-
erated in a modified FWM scheme (see Figure 13.2) where the first two interactions
happen along the same direction k; = k;, inside one pump pulse. The system is
effectively excited by two pulses with different wave vectors k; and kj, respectively.
If the k;3-pulse — the probe pulse — with envelope &£;(t) and frequency w3 follows
the kq-pulse into the sample, they generate the third order polarization also into
the direction k; = k3 = —k; + kq + k3. A detector can be used to measure the
integrated intensity of the transmitted beam along k3 depending on the delay T be-
tween the two pulses. According to (13.41) the relative change of the probing light
intensity with respect to the input intensity is:

w3 ffooo dt Im [(P(l)(t) + 73(3)(t; T))S;‘(t)]
m{@s)éoc 12 dtE )12

S(ws; T) = . (13.53)

where PC)(t; T) = 0 for T < 0. Subtracting the absorption without the first pulse
we can get to the nonlinear (T dependent) part of the absorption

AS(w3; T) = S(w3; T) — S(ws; T < 0) . (13.54)

Above, we have written the argument of the absorption coefficient as w3 — the carri-
er frequency of the second pulse. This is because we have assumed that the change
of the total intensity of the second pulse is measured. This is analogous to the linear
absorption measurement which is done by scanning excitation frequency.

Alternatively, one can measure a frequency dispersed signal AS,,(w; T) for
which we have

AS(ws3; T) = / doAS,,(0:T). (13.55)

The dispersed signal can be written as

w;  Im[P®(w; T)ES (w)]

n(ws)eoc ffooo dw|&s(w)]?

AS,,(w:T) = (13.56)

where all quantities with argument o are Fourier transforms of their time-
dependent counterparts.

An important conclusion here is that the relative absorption is proportional to
Im [PC)(£)E*(t)]. If we assume & to be real, the imaginary part of the product cor-
responds to the component of the polarization which is out of phase with respect
to the field. This phase difference thus defines the absorption intensity.
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13.3 Nonlinear Polarization and Spectroscopic Signals

13.3.3
Heterodyne Detection

From the above section we can see that the pump-probe signal is linearly propor-
tional to the third order polarization. In terms of the signal strength, this is an
advantage over direct detection of the third order field, which corresponds to the
FWM experiment discussed in Section 13.3.1 where the intensity depends on the
square of the weak third order field. To get the same advantage of detecting the
signal linearly dependent on the third order field, we introduce the so-called het-
erodyne detection scheme. We add an extra electric field Ejo(t), traditionally termed
the local oscillator, along the selected nonlinear signal direction in the N-wave mix-
ing experiment, and measure them together (see Figure 13.2). The total intensity
is then

Lot ~ | Es(t) + Ero(t)|* = |Es(t)|* + | Ero(t)|* + 2Re [Es(t) Efo(1)] . (13.57)

The first term is of the second order in the weak field and can be neglected,
while the second one is known, or can be measured separately and afterwards
subtracted. The third term is linear in E(t) and due to (13.50) it is proportional
to Im [7?5(3)(1&) E[5(t)]. The signal that we thus measure is in some sense analogous
to the pump probe. Or from a slightly different point of view, we can say that the
pump probe is a self-heterodyne detected signal.

In the pump-probe method, the relative phase of the excitation field and the gen-
erated third order signal is very significant. It determines the differential absorp-
tion. The local oscillator, however, does not generate the signal Es and the relative
phase between E and Ejo can in principle be arbitrary in the experiment, unless
it is phase-locked with the excitation field (this could be achieved if the LO pulse
is obtained by branching the excitation pulse pathway and using a part of the exci-
tation pulse as the LO pulse). The aim of the heterodyne detection is to determine
the field Eg, but if the phase of the LO field is not locked with the excitation field,
the signal field can be only determined up to arbitrary phases difference. One way
of setting the phase of E; to something meaningful is to compare the heterodyne
detected intensity, (13.57), with the signal detected in pump probe, where the rela-
tion between the exciting field and Ej is properly defined as it is self-heterodyned.
More details on this issue are given in Appendix A.9.
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Microscopic Theory of Linear Absorption and Fluorescence

To introduce basic theoretical ideas of spectroscopy we need to discuss a system of
at least two quantum levels interacting resonantly with radiation. In any realistic
situation, the two levels interact not only with the radiation, which is controlled
in an experiment, but also with the electromagnetic vacuum and possibly other
degrees of freedom (molecular electronic levels are inevitably coupled to nuclei of
the molecule, for example) which form its environment (see Chapter 9). Linear
absorption spectroscopy, and indeed any other type of spectroscopy, reveals some
basic properties of both the two-level system and its environment.

141
A Model of a Two-State System

The interaction of the system with the environment can cause both the energy
relaxation (its irreversible transfer to the environment) and pure dephasing. We
will see later that in the linear absorption spectra (to which we will limit ourselves
for a start) both effects appear as different forms of dephasing. The model system
we study has a ground state |g) and an excited state |e) so that its Hamiltonian
reads as:

Hy = Hy|g){g| + H.le){e| . (14.1)

Here, the operators I:Ig and H, represent the Hamiltonian operators of the envi-
ronment when the system is in the states |g) and |e), respectively. The terms pro-
portional to |g)(e| would inevitably cause the energy transfer to the ground state.
Hence, this process is neglected.

We have studied the fluctuating properties of such a system in Section 8.6, where
the energy fluctuations have been characterized by a set of spectral densities. In this
section we continue to study this system and describe its optical responses.

In electronic spectroscopies one can often assume that the system in thermal
equilibrium (before excitation by the external fields) occupies only the ground elec-
tronic state |g) and its total density matrix has a form:

169(] = WB|g) (gl , (14.2)

Molecular Excitation Dynamics and Relaxation, First Edition. L. Valkunas, D. Abramavicius, and T. Mancal.
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14 Microscopic Theory of Linear Absorption and Fluorescence

where the equilibrium density matrix of the bath is wg = exp(—f I:Ig) |Zg, BT =
kg T (see Chapter 7). The system interacts with the classical external field E(t) via
the Hamiltonian (see (13.5)),

Hi = —t- E(t), (14.3)
where

ft = dgc|g) (el + degle) (gl (14.4)

is the polarization operator, and we disregard the vector notation. The optical field
thus induces vertical transitions between the electronic ground and excited states.
Otherwise, when the optical field is off, the system is adiabatic.

In coming sections we relate microscopic properties with the susceptibili-
ty x(w), (13.34), and through it with the macroscopic absorption coefficient
Ka(), (13.43).

14.2
Energy Gap Operator

Based on the Liouville equation, (13.7) in Section 13.1, we derived an expression
for the first order response function S (t). The scalar first order response function
of (13.18) reads as:

sty = %0 (t)Tr (Ug‘(t)/) Uo(t)it v?/eq) +cc. (14.5)

The microscopic expression for SM(t) together with (13.43), (13.33) and (13.32)
form a closed quantum mechanical theory of the absorption spectrum. Now we
apply it to the model of the two-level system introduced above.

First of all, the trace operation can be performed separately on the Hilbert spaces
of the environment and of the relevant degrees of freedom so that

TrA = Trg Z (alAla) | , (14.6)

a=ge

for an arbitrary operator A. The response function thus reads as

sty = %O(t)TrB (<g| Ul ()i Uo(t)mg)wB) + cc. (14.7)

The Hamiltonian Hy is diagonal in the basis of vectors |g) and |e), and correspond-
ingly the evolution operator Uy(t) is diagonal. For the dipole moment operator only
the off-diagonal elements d,, = (a|it|b) (where a # b) are nonzero and thus we
have

SW(t) = %0 ()] degTr (U;‘(t) Ue(t)wB) +ee (14.8)
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14.3 Cumulant Expansion of the First Order Response

Here, the elements of the evolution operator

A

Uy(t) = exp(—iHgt),  U(t) = exp(—iH.t), (14.9)

contain the Hamiltonian operators of the environment. The operator f]gg(t) =
[7; (t) U, (t) composed of them can be found to obey a simple equation of motion

0 /r. A ~ N e A
= (G010 0u) = - — Ay Uyt (T} 0.00) (14.10)

and it can, therefore, be written in terms of Athe difference I:Ig — I:Ig. In (14.8) we
take the expectation value of the operator U,,(t) at the equilibrium state of the
environment. It is advantageous to take the difference H, — H ¢ at this equilibrium.
We define the so-called energy gap operator,

AV () = Ul (1) (ﬁe - ﬁg) Uy(t) — reg » (14.11)

where w,; = Trs[(H, — I:Ig)wB] so that the solution of (14.8) is

t
UJ () U (t) = e st exp —i/dt’AV(t’) ) (14.12)
0
The energy gap operator, (14.11), is an appropriate small parameter upon which
one can base perturbative evaluation of the response function, (14.8). As w., is
subtracted in (14.11), the A V() represents environment-induced fluctuations of
the transition energy.

14.3
Cumulant Expansion of the First Order Response

Equation (14.8) can be evaluated by the perturbation theory with respect to A V.
One might, for instance, try to approximate the time ordered exponential in (14.12)
by its expansion up to a certain order. Ideally, one would like to evaluate such a
series in all orders. It turns out that a partial summation to all orders is possible
by the so-called cumulant expansion explained in Appendix A.8. We start with the
second order Taylor expansion in (14.12)

e Try (O () Oi(t)wn) = 1 —i/ dt'Try (A V(¥
0

t t
—/dt’/dt”TrB (AV(t’)AV(t”)wB) + ...
0 0
(14.13)
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Here we notice that the first order term is zero, because of the invariance of wg to
the time evolution by Ug (£), and thanks to (14.11) where we defined AV (t) such
that its equilibrium average is zero:

Try (A \A/(t/)wB) = Trg (A V(0) Ug(t')ws Ug‘(t’))
= Trg (A V(O)WB) =0. (14.14)

The first nonzero order of the Taylor series is, therefore, quadratic in AV (t). The
second order term of (14.13)
t T2
i A A
glt) = / dr, [ doiTr (A V() A V(rl)wB) (14.15)

0 0

is usually termed the line shape function (see Appendix A.8) [26, 91]. The function
inside the double integration, is the energy gap correlation function

C(t) = Try (A V(t)AV(O)wB) . (14.16)

It plays an important role not only in determining the absorption spectrum, but
forms a basis for the energy relaxation theory as described in Part One. As we
show later, the nonlinear spectroscopic experiments involve also a set of correlation
functions of the fluctuations of various energy levels. Using the result of Appendix
A.8 we can write the ordinary exponential for the propagators

Trp (Ug(t) Ug(t)wB) ~ e 8l—iogt (14.17)

So the linear response function is
sW(f) = %0 (8) degl2e 1780 1 c.c. (14.18)
Combining (13.34) for the susceptibility y(t) and (13.43) for the absorption coef-

ficient k, (@) we arrive at the final expression for the absorption spectrum in terms
of the line shape function g(t) (or the corresponding correlation function C(t))

_ w
)= o)

oo
|deg|*Re / dtell@—@e)t—8lt) (14.19)
0
As already pointed out at the beginning of Section 14.1, the absorption spec-
trum reveals both the properties of the transition (in terms of d., and w,) and the
properties of its coupling to the environment (in terms of the lineshape g(t) func-
tion). While the transition dipole moment d., and the transition frequency . are
quantities accessible in many cases from the first principles of quantum chemical
calculations, it is much more difficult to obtain the energy gap correlation function
C(t) from such calculation. To gain insight into the physics of molecular systems it
is sometimes more useful to investigate spectra using model correlation functions
discussed in Section 8.6.
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14.4 Equation of Motion for Optical Coherence

14.4
Equation of Motion for Optical Coherence

In the previous section, we have calculated the absorption spectrum of a two-level
system by directly evaluating the first order response function, (14.5). What mat-
tered for this calculation was the dynamics of the degrees of freedom of the envi-
ronment which were reduced to the energy gap correlation function C(t). It seems
as if nowhere in our description did we refer to the density matrix of the system
reduced to the degrees of freedom of the two-level system itself. It is, however, the
first order response function that hides the reduced density matrix as we will show
now. Using our assumption that /t does not depend on the environmental degrees
of freedom we can rewrite (14.5) in the following way:

sO(t) = %O(t)Tr (L6 (t) =16 (t)dge0eg(t) , (14.20)

where ¢ is a reduced operator

o(t) = Trs (Do) Wo UJ (1)) = I€)degpeslt) (gl - (14.21)

Here, we dropped the part of the response function oscillating with e!“«* and in the
last line we have introduced the matrix element p.g(t) = (e|0(t)|g) of the reduced
density matrix

B(t) = Trg(W (1)) . (14.22)
The initial condition for the reduced density matrix is (see (14.2))
Blto) = le) gl - (14.23)

The response function S(t) can thus be written in terms of a single element of
the reduced density matrix

S01) = £ 0/(0)]dgelpeglt) (14.24)

The response function and the absorption spectrum could thus also be obtained
from the dynamics of the reduced density matrix for which one could in principle
derive equations of motion.

It is, however, very important to note at this point that the initial condition
in (14.23) and, therefore, the reduced density matrix introduced by (14.22) do not
fulfill the properties of the density matrix (see Section 4.5). Obviously,
|Pegl* £ Pecpgg = 0. This is a consequence of the fact that we calculated the spec-
troscopic signal by the perturbation theory and the density matrix &(t) in (14.21)
is only the first order in the field correction. The total density matrix, represent-
ed by the complete series, should follow the equation of motion, (13.7), and the
reduced density matrix properly derived from it by the trace operation fulfills
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the requirements of Section 4.5. For the Hamiltonian, (14.1), the evolutions of
all reduced density matrix elements p,;(t) = (a|p(t)|b) remain independent of
each other, and it is thus possible to augment the reduced density matrix initial
conditions, (14.23) to

le) (gl + Ig){el + |g) (gl + le){el
3 :

Blto) = (14.25)
After obtaining the solution of the Liouville equation for the reduced density matrix
in the form of the time evolution p(t) one can calculate the absorption spectrum
from a single element p,,(t). This issue underlines the uneasy relation between the
response functions and the equations of motion of the reduced density matrix.

At present we can derive the equation of motion for the element p,4(t) directly
from the known expression for the first order response function. For ¢ > 0 we have
by differentiating (14.24)

d

ﬁ,oeg(t) = —i0 gPeq(t) —/dt’C(t’)peg(t) . (14.26)
0

This master equation has been derived indirectly via derivation of the response
function, and it has the same validity as the cumulant expansion. Notice that for the
bath of harmonic oscillators with linear system-bath coupling the fluctuations of
the canonical ensemble are Gaussian (see Section 7.8) and the cumulant expansion
is then exact, so (14.26) is exact. It is, therefore, interesting to note that it contains
AV only to the second order. Its exactness is possible (but not guaranteed) by the
fact that its solution actually contains all orders of A V.

14.5
Lifetime Broadening

As shown in the previous section the interaction between the optical transition and
the environmental degrees of freedom enters the absorption spectrum via decay
of the matrix element p.4(t). Such decay is also termed the dephasing, and it is
not a result of population relaxation (which is not involved in linear response).
If the system interacts with some degrees of freedom which can cause transition
between the levels, and consequently the energy relaxation, such relaxation would
nevertheless result in a decay of the coherence elementp,4(t) of the density matrix as
shown in Chapter 8. This can happen because of two sources: the fluctuations of
the nuclear bath which causes radiationless transition between electronic states,
and the interaction with the quantum electromagnetic field.

In Chapters 8 and 11 we have described the density matrix dynamics under
the influence of the fluctuating bath coordinates. Equation (11.33) is the simplest
model for the density matrix dynamics. Let us now assume that we have two elec-
tronic states |g) and |e) and all fluctuations are off diagonal (Section 8.4). In this
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case (11.33) turns into

d

Epgg(t) = —|keglpgg(t) + [Kgelpee(t) (14.27)

d

apee(t) = —lkgelpee(t) + |keglpgg(t) (14.28)
and

d . .

Tbeall) = i — 172Peglt) (14.29)

Here the parameters are

oo
keg| = 2|heg|*Re fdrC(r)eiwegf, (14.30)
0
oo
kge| = 2|heg|*Re fdrC(r)e—iwegf, (14.31)
0
and
(o)
Veg = el f dr (C(r)e™'s" + C(—1)e %) , (14.32)
0

where ﬁeg is the parameter determining the system-bath coupling strength (see
Section 8.4). So the real part of the dephasing rate, which is responsible for the
decay of the coherence is

1
Reyeg = S(Ikegl + lkgel) - (14.33)

Notice that this may be included as an additional decay term to the g(t) function,
since the g(t) function is a result of the diagonal fluctuations, which do not induce
the decay of the excited state (that is correct when the diagonal and off diagonal
fluctuations are independent). So the linear response function can then be given as

SU(t) = 16 (t)|dg|?e Ve 8N~ Taeht ¢ ¢, (14.34)

and the absorption is the Fourier transform of the p,4(t) density matrix element;
we can write the absorption as

]

Ky(w) =

o0
) |dgg|2Re/dtei(“'_““g)’_gm_rde?ht. (14.35)
n(w)c

0

Here [epn represents the lifetime induced dephasing part which can in general be
given as

(' +1) . (14.36)

N =

Fdeph'ab =
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14 Microscopic Theory of Linear Absorption and Fluorescence

where the lifetime of state |a), 7,, describes all causes of the decay of the excited
state.

Even when the nuclear degrees of freedom are absent (so the environment fluc-
tuations can be neglected) interaction with the electromagnetic field is yet another
cause of the decay of an excited state. The Hamiltonian, (14.1), can then be extend-
ed by the free radiation Hamiltonian Hr" and the corresponding interaction term.
Thus, the new Hamiltonian reads as

Ho = Hglg) (gl + H.le){e| + Fir — E(degle)(g] + dglg)(el) (14.37)

Now we want to evaluate the density matrix element p.,(t) when the vacuum con-
tains the bath of the quantum electromagnetic field in addition to the nuclear bath.
We are interested solely in the evolution (dephasing) of the density matrix element
Peg(t). To this end, let us use the results of Chapter 9.

We use the projection operator technique to project the information onto the sin-
gle matrix element of our interest, that is on p.,(t). The corresponding projector P
can be defined as follows

P W (t) = Trgx({el W(£)|g)Wole) (gl = peg(t)Mole) (g

: (14.38)

where W), is some operator on the Hilbert space of the environment and the radi-
ation. The trace is taken over the bath and the radiation field. It is useful to choose
itin a form that eliminates the initial condition term so that P W (ty) = W (to). In
our present case we assume that the emission occurs from a thermally equilibrated
state of the environment, and the radiation is in its vacuum state denoted by |&).
It is important to note that the equilibrium state of the environment from which
we start is taken with respect to the excited state |e) of the system. Therefore, we
assume that before the emission the system had enough time to equilibrate in the
excited state, which is usually the case for the electronic excitations [24]. Thus, we
choose the initial density matrix

Wo = wl|2) (2], (14.39)

where wp is the canonical distribution of the vibrational environment with respect
to the excited electronic state |e). The initial state of the system will then be as-
sumed in a form of a product

W (to) = |e) (e|w)|2) (2] . (14.40)

Let us start with (9.49) using the projector defined by (14.38). To this end we

divide the Hamiltonian H, into the three (system, reservoir, and their interaction)
parts in the following way

Hs = hwgle)(e], Hr = Hr+ Hg, (14.41)

1) The index T stands for transversal and relates to the fact that the radiation is formed only by the
transverse field, that is with property rotE = 0.
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Hsr = @ (le)(g] + |g)(el) + AVle) (el , (14.42)

where for brevity we use
& =—d-E. (14.43)

Two terms of PLsg(t)Pp(t) = P Hsr(t)Pp(t) — P(Pp(t)) Hsr(t) vanish as they are
linear in operators AV and @. This result removes the first term in (9.49) and
also simplifies the integration kernel of the same equation. The integration kernel
has a form PLgg (t) QLsr(t — 7)P where Q = 1 — P. Because PLgg(t)P = 0, we
can write PLggr(t)QLsr(t — )P = PLsr(t)Lsr(t — 7)P. The double commutator
Lsr(t)Lsr(t — 7) results in four terms and so the integration kernel reads as

PLsr(H)Lsr(t — T)Pp() = Peg(t)le)(g|w](;)|@)<@|

—Trw ((21(el Fswle)wi” (g] Asr (1) 2)|2))
—Trs ((@1(el s (1) ) wi” (gl Asxlg)|2))

+ Try (wl(21(gl Fse s (1121 2) )] -
(14.44)

The third and fourth lines contain the element (g| Hsg|g), and they are, therefore,
zero. The remaining matrix elements containing two occurrences of Hgg can be
easily separated into contributions of the nuclear bath and the electromagnetic field
by using the definition, (14.42)

(@(e] Hsr (t) Hsre)|2) = (2| P (1) D|@)el”! + AV(HATV, (14.45)
(@|(g| Hsr Hsr (1)|8)|2) = (@] D (1)|@)e " . (14.46)

The equation for the density matrix element p,4(t) now reads
—1

t—to
] , 1 .
3 Peslt) = —i0gog(t) = = / drTry (A V(1) A V! )) Peg(t)
0

t—to

2 A A .

ﬁRe/dr(m(D(r)d)M}e“"egr Peg(t) (14.47)
0

where we used (@] ® é)(t)|®) = (9| @(t)(i) |@)*. The first term on the right hand
side recovers the lineshape function discussed in Section 14.4 and the second term
corresponds to the contribution of the light-matter interaction to the dephasing.
The corresponding rate of dephasing due to radiation is

Fweg) = / dt(2|D (1) D |@)e' " . (14.48)
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304 | 74 Microscopic Theory of Linear Absorption and Fluorescence

Here we assumed, ty — —oo. The expression, (14.48), can be evaluated. First we
evaluate the matrix element with the interaction Hamiltonians

(B|P () P|2) = (D]deg - E(t)d,y - E|D)

1
= Z Z Wk g(deg - €qu)(deg - eki)E

ki qu

h h (2] tyal | @) 14.49
X a a , .
2eowy | 260wy 1(1)auq ( )

where we applied the definition of the electric field operator, (4.273). In the summa-
tion over the field modes we perform a summation over scalar product of a single
vector, d,, with wavevectors corresponding to all possible directions of the field
polarization. We can replace this summation with an integral over the density of
modes on one hand, and an average of the expression (d., - €4,)(dcg - €x2) Over an
isotropic distribution of orientations, on the other hand. The averaging leads to

1
((deg : eqy)(deg * €k1))orient. = géyl|d6g|2 . (14.50)
In this intermediate step we obtain
Ao hwyr _;
(@lo(t)Pl2) = |deg|22ﬁe Ok (14.51)
ki

Instead of summing over modes we will now integrate over the number of modes
at frequency @. The number of modes can be obtained by multiplying the mode
density n(w)dw = w?/(n*c?)dw, (2.79), by the volume £ and we get

(2| (1)@ |2) = |deg|2/dw n(w)ZTa;e_i“” : (14.52)

Now we perform the time integration in (14.48) which leads to a Dirac delta func-
tion, that expresses the energy conservation:

o0
/ dte 0729 = 15 (w — W) . (14.53)
—Oo0

Now we can easily perform the integration over w leading to

_ |d:¢g|2w3

() = beohndd (14.54)

This is consistent with excited state life time 7, and the Einstein coefficient A; ¢ for
spontaneous emission

1 |degl* 0’
Ajp = — =2l (0,g) = —2

. = Seohnc (14.55)
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14.6 Inhomogeneous Broadening in Linear Response

We thus find that irrespective of the source of off-diagonal fluctuations, be it the
nuclear vibrations or the electromagnetic vacuum, they all contribute to the decay
of the density matrix coherence in the same way. From the density matrix dynam-
ics including the populations (see (11.33)) the off-diagonal fluctuations induce the
decay of populations with the rates tightly connected with the dephasing rates. Our
calculation, therefore, also provides a result for the lifetime due to electromagnetic
vacuum 7, = I'(w4)/2.

Now we can update the first order response function by adding the dephasing
rate in (14.24). The absorption spectrum will therefore also include an additional
lifetime-relaxation terms.

14.6
Inhomogeneous Broadening in Linear Response

In the above sections we have always assumed that we work with a single represen-
tative molecular system, and that the total response is the response of this system
multiplied by the number of the equivalent molecular systems in the sample. The
situation where all molecules are exactly the same is, however, rather rare. Their
parameters, such as the optical transitions energy, might depend, for example, on
some very slowly changing parameters of the environment. This is referred to as
the inhomogeneous disorder, and it leads to the so-called inhomogeneous broadening
of the spectra. The word inhomogeneous refers to the fact that individual molecules
exhibit different parameters from each other during the spectroscopic experiment,
and it is in contrast to the homogeneous broadening which stems from the interac-
tion of the molecule with some fast component of the environment, which averages
out quickly so that it is essentially the same for all molecules. Our averaging that
led to the line broadening function was of this latter type. One should often keep
in the consideration two types of disorder. First, in this section we will look at the
consequences of energetic disorder, that is the situation where transition frequen-
cies of the molecules are distributed according to some simple law. Second, we will
consider the fact that molecules or complexes are oriented randomly in the sample
in Section 15.2.6.

For simplicity we assume that the disorder concerns only the energy levels of a
system in question, and that the fast fluctuations of the environment responsible
for the energy gap correlation function are independent of the slow fluctuations
that cause the disorder. This enables us to perform two averaging procedures, over
the fast and slow fluctuations, independently. We might assume that the total den-

(fast slow)

sity matrix reads as Weq = Weq )® V?/e(q
ing to the slow bath is U™ (t) ~ 1. As the origins of the two types of fluctuations
are essentially the same, we may add the slow component to the energy gap opera-

tor, (14.11) and write for its time dependence

) and the evolution operator correspond-

fast)

AV,g(t) = AVE™ + AVE (1) . (14.56)
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14 Microscopic Theory of Linear Absorption and Fluorescence

The response functions can be now constructed in the same way as in Sec-
tion 14.3, that is by using the cumulant expansion. Also, here we will assume that
Tr{A Vg(glow) We(csllow } = 0, and only term TrB{AVeSIOW AVB(EIOW) We(glow y=hEAL, s
considered to be nonzero. The slow energy gap correlation function and the line
shape function read as
slow (slow) 1 2
1) =w AL, g = 2 Ajnt? . (14.57)
Adding the slow component to our expression for the absorption coefficient,
(14.35), we obtain

w .
Ka(w) = Wldeg|2Re/dtel(w_weg)t_g(t)_%Ai“htz_rdepht . (14.58)

This expression contains both inhomogeneous and lifetime broadening and com-
bines thus the Gaussian and Lorenzian line shapes.

As we study third order nonlinear response in the next chapter we find the third
order response function more complicated; however, we can still use the lineshape
function for the slow degrees of freedom as we did in this section.

14.7
Spontaneous Emission

So far we have been only interested in the system properties during the experiment
corresponding to the absorption or emission of radiation. Interaction with the elec-
tromagnetic vacuum as we described in Section 14.5 causes the decay of the excited
state, but also radiation of new field, which we study in this section and results in
a spontaneous emission. Here we will be interested in the spectrum of such an
emitted radiation.

The Hamiltonian, (14.1), can be extended by the free radiation Hamiltonian Hr
and an interaction term. Thus, the new Hamiltonian reads as

Hy = Hlg)(gl + H.le)(e| + Hr — @|e)(g] + D T[g)(el) - (14.59)
Here
'i hwk A,
wgez TP (14.60)

is the form of the electromagnetic field multiplied by the transition dipole (4.269)
(we neglect vector notation, so u,, should be understood as the projection of the
transition dipole into the electric vector of the quantum radiation field, greek alpha
signifies the field polarization). This setup describes the system not affected by the
external classical field, E = 0, but the vacuum contains the bath of the quantum
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14.7 Spontaneous Emission

electromagnetic field. As a consequence, the excited matter radiates photons. When
we measure the emission of photons into a given mode of the electromagnetic field
(characterized by a polarization vector e, and a wave vector k = nw/c) we are
interested in the rate of change of the population ny, = Tr(&j; pOak W (t)) of this
mode with the initial condition that the material system is excited and there are no
photons in the field, while the vibrational environment is equilibrated. This is all
represented by the following initial density operator:

W (to) = le)|2)(@|(e|wy” . (14.61)

Here |e) denotes the excited state of the electronic system, |@) (| denotes the vac-
uum of the electromagnetic field and w](;) is the canonical ensemble of bath oscilla-
tors with respect to the excited state of the matter. w](;), therefore, has to be invariant
to the evolution operator U, (t) and not to Ug(t). The AHamﬂAtoniarAl, (14.37), may be
for our purposes rearranged into the standard form Hy = Hgs+ Hg + Hsg in a way
reflecting our preference for the excited state as a starting point of the dynamics:

Hs = —hwlg)(gl, Hr = H,+ Hr, (14.62)

Hsg = @ (|e)(gl + Ig)(el) + AVIg)(gl - (14.63)
This time the energy gap operator reads

AVg = Ay = .+ hoy, oy =Trg (= Hwl) . (14.64)

The difference between the vertical absorption and vertical fluorescence frequency

oY — ol =Trg ((F. - ﬁg)w}‘;)) ~Trg ((ﬁe - ﬁg)w}‘f’) =2

The rate of fluorescence into the given mode described by polarization a and
wavevector k can be given as the rate of change of the number of photons

dt dt
= —iTr (aj;kaakz:SR\?/(t)) , (14.65)

d . d o
Ok = —Ngi = It (alkaak— W(t))

where in the second line we have written out explicitly the trace over the electronic
as well as electromagnetic degrees of freedom, and we used the Liouville equation
for the total density W (t) (the Liouvillians £s and Lg do not contribute.

Now we will expand the total density matrix in (14.65) to the first order in the
interaction Liouvillian (see (13.12)) which yields:

o0
Ogk = (—i)ZTI' &Zk&ak / dt’ESRZ/lO(t’)ESRZ/lO(t — t/)VAV(t()) . (1466)
0
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14 Microscopic Theory of Linear Absorption and Fluorescence

Going back to the Hilbert space and using the condition that the electromagnetic
field is initially in vacuum, we get

o0
Our = —AImTr /dt’ U (') Hsg U (¢) Hsg W (t0) | - (14.67)

0

Using the explicit form of the density operator we have
oo
Our = —2iIm / dt/eil®e—24)¥
0

x Trp (A Vo)A Vge(O)wg’) Tro («iﬁ(t’)éﬁ"‘(O)ﬁ@) . (14.68)

The trace over the field can be obtained using (7.131), which for the present case
gives

i hwk —iw
Tro (P () DT(0) = luge* D 50 (14.69)
ak

while for the nuclear bath correlation function we use the cumulant expansion that
gives

Try (A Vo (t) A Ve (0wl ) = exp(—g* (1) - (14.70)

Here the complex conjugation is because the bath is equilibrium with respect to the
excited electronic state |¢), while g(t) is determined for the equilibrium with respect
to the electronic |g) state. We thus get the electromagnetic field mode occupation
number

oo
Tak o |uge” ) wiRe / dteloet—AR g —ont (14.71)
k 0

As can be seen inside the integral we find the resonance selection, where the sys-
tem will emit the field in the range of frequencies w close to w., —24. In the case
of uniform density of electromagnetic modes (within the range of the resonant
frequency) we can write the spontaneous emission or the fluorescence spectrum
as

o0
o(w) o w|ug|*Re f dpemiot ot —2i—g"() (14.72)
0

The presence of the emission spectrum implies that the emergence of emitted
photons is due to the electronic transition between the excited state and the ground
state. The excited state lifetime broadening due to radiational transition should
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14.8 Fluorescence Line-Narrowing

be included when the system absorption linewidths are extremely narrow, for in-
stance, in cold gasses. Their atoms will show spectrum, whose linewidth will be
influenced by the excited state lifetime as described in Section 14.5. However, the
radiative lifetime is usually quite long in complex biological molecules and, there-
fore, the radiative lifetime-induced spectral broadening is much smaller than that
induced by nuclear vibrations of the surrounding. In that case the radiative effects
may be disregarded.

14.8
Fluorescence Line-Narrowing

In the previous section we have seen that both absorption and emission spectra
crucially depend on the bath correlation function C(t). As explained in Chapter 8,
the time-dependent function C(t) is in turn related to the spectral density C”(w) or
to the often used quantity J(w) for which we have C”(w) = w? J(w) (see e.g. [20)):

C(t) = /drwzj(a)) [(1+ n(w)e™™" + n(w)e?] , (14.73)
0

where n(w) is the Bose-Einstein distribution. We will now discuss an experimental
measurement, which allows us to directly estimate J(w).

We will need the relation of J(w) to the lineshape function g(t), which is easy to
obtain by integrating (14.73) according to (14.15). This can be given in a form

g(t) = G(0) — G(t) —ilt, (14.74)

where 1 is the reorganization energy A = fooo doo J(w)and
oo
G(t) = /da)](w) [(1+ n(w)e " + n(w)e'] . (14.75)
0

We notice that at low temperatures, T — 0, when we have n(w) — 0, the line
shape function simplifies significantly:

Gr—o(t) = / do J(w)e " . (14.76)
0

Consequently, the expressions for absorption and fluorescence simplifies too.

Let us introduce the so-called fluorescence line narrowing measurement. In this
measurement the system is excited at a frequency wex by the spectrally narrow
light, and the spectrally resolved fluorescence is recorded. The recorded intensi-
ty I(@, wex) Will depend not only on the emission coefficient o(w), but also on
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the ability of the molecular system to absorb the excitation frequency, that is the
absorption coefficient at the given frequency o (wex):

I, Wexe) = O (Wexc)O(@) . (14.77)

This holds for the case when all the molecules in the ensemble have the same
absorption and fluorescence spectra.

The ensemble of molecules at low temperature will contain inhomogeneities,
causing disorder of transition energies. To take into account the disorder, we have
to integrate over some inhomogeneous distribution function Pipp(weg — @.g) of
transition energies around the mean value @ ,. The absorption spectrum of a sin-
gle molecule with the transition energy ., will be denoted by a(w; w.,) and sim-
ilarly, the fluorescence spectrum of the same molecule will be denoted o(w: w ).
Thus, in the case of disorder, the recorded fluorescence will read:

oo
f(a), Wexc) = / da)ggPinh(a)gg — Weg)A(W; Weg) O(@; W) - (14.78)

—00

The results of the previous sections for the absorption and fluorescence can be
written in a very symmetric fashion:

oo

a(w; @) ~ e 0O / dteCitilo—olgt (14.79)
—0
(o)

O(w; @) ~ e~ 6O f dteC Nmilw—wlt (14.80)
—0

where we have introduced the purely electronic transition frequency wgg = Weg—A
(@ g is the vertical Frank-Condon transition). For the absorption we can write

oo oo
a (w; w(e)g) ~ / dtei(w—w(e)g)t + / dt(eG(t) _ 1)ei(w—(u(e)g)t
—0o0 —00

=270 (0 - 0ly) + ¢ (0 - 0f) | (14.81)

where we defined
o0
(o) = / dt (e — 1)’ . (14.82)
—o0

Similarly for the fluorescence we have

o (w; w(e’g) ~ 270 (a) - a)gg) + ¢ (w(e’g - a)) : (14.83)
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Now we can construct the averaged fluorescence intensity, (14.78), using the re-
sults of (14.81) and (14.83). We obtain:

oo
I, W) ~ / dwfjgpmh (wgg — d)eg) [43‘:26 (wexC — wgg) o (a) — a)gg)

—0o0

+ 2716 (cueXC — wgg) I (a)gg - a)) + 276 (a) - w‘ég)

X ¢ (wexc - w‘;g) +¢ (ct)eXC - w;’g) ¢ (wgg - a))] .
(14.84)

All four terms have a rather straightforward interpretation. The first term corre-
sponds to the excitation of the zero phonon transition, 0 — 0 and the emission
through the same transition 0 < 0. The second term corresponds to the excitation
0 — 0 and the emission from the sideband, and the third term is corresponding-
ly the excitation to the sideband and emission through the zero-phonon line. The
very last term corresponds to the situation when both excitation and emission oc-
cur throughout the sideband. The strongest signal of all is the first term, and it
corresponds to a very narrow zero-phonon line. At low temperature, the side band
only occurs on the higher energy side of the zero-phonon line so that the second
term is weak, although the zero-phonon line is strongly allowed. The fourth term
is even weaker because it is excited through a weak sideband.
The third term which leads to

50e(©, 0exe) & Pian(© = Dig) p (@xc — 0% ) (1485)

is, therefore, the main focus in the experiment. The importance of this expres-
sion becomes clear when we realize that due to (14.76) and after an approximation
e®® ~ 1+ G(t) we can write

P(w) ~ / dt/dw’](w’)ei((“_(“/)t = J(») . (14.86)
—0o0 0

The sideband of the fluorescence line-narrowing spectrum is, therefore, directly
related to the spectral density J(w). If the disorder is small in the fluorescence
line-narrowing experiment, that is the distribution Py, (@ — @) is sharply peaked
around @.g, we scan the sideband and, therefore, we scan the spectral density by
the excitation frequency wey. This enables us to estimate the spectral density of
real molecular systems directly.

14.9
Fluorescence Excitation Spectrum

Another relatively simple experimental method using the fluorescence signal is
designed to give information about the excitation energy transfer phenomena in
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molecular aggregates. The so-called fluorescence excitation spectrum is designed to
reveal the efficiency of the excitation energy transfer between various spectral re-
gions of an aggregate when these regions are energetically distinct.

Let us assume a molecular donor and acceptor. Since the energy transfer occurs
preferentially downwards, the donor molecule will absorb at higher-energy than the
acceptor molecule. The two spectra can be overlapping; however, the high-energy
region and low-energy region can be separately attributed. We denote the high en-
ergy region by D, because it represents the part of the aggregate which donates
energy to the acceptor region which we denoted by A. If we now excite the system
at frequency wey in the D region, we can expect the system to fluoresce at some
frequency w,, which will be in the acceptor region. The total recorded fluorescence
from the acceptor, when excited at wex, will be denoted as:

Fwex) &~ /dwﬂa(a}ﬂ;a}exc) . (14.87)

The dependence of the fluorescence on the excitation wavelength was not discussed
in the above sections, because we started the theory at the point when the excitation
has been predefined, and the excited state has relaxed to the thermal equilibrium
from which the fluorescence occurs. In the case of excited energy transfer from
the donor to the acceptor, it is evident, however, that when the excitation gets lost
during the transfer between the original excited donor states and the fluorescing
acceptor states, the total recorded fluorescence from the acceptor molecule will be
diminished. This dependence of the fluorescence on the excitation frequency can
be quite strong.

The spectrum defined by (14.87) already gives us an information from which
spectral regions the energy flows to the fluorescing region. To turn it into a quanti-
tative estimation of the efficiency we have to record the absorbance A, which is for
low absorption similar to the absorption coefficient, (13.43),

Alw) = J@) = D) ). (14.88)

Lo(w)

Now, when the system is excited directly in the acceptor region (in the region of the
maximum fluorescence F(w,)), that is, no transfer is needed to achieve fluores-
cence, the situation is equivalent to the 100% transfer efficiency. If we had another
region from which the efficiency were 100%, the fluorescence would change only
by the difference in absorption. Consequently, by normalizing both the absorption
and fluorescence excitation spectrum to one at the frequency w, we can estimate
the fluorescence loss {(w) at a given frequency:

E(w) = - : (14.89)

We can consequently also define the efficiency of the energy transfer as:

Qo) = (1— &(w)) - 100% . (14.90)
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This quantity tells us what percentage of the absorbed quanta of energy were lost
during the transfer of excitation process and, therefore, this rather simple spectro-
scopic approach can provide us with an important information about connectivity
between different regions of the aggregate absorption spectra. No expensive time-
resolved experiments have to be performed if we want to know how much of the
absorbed energy gets delivered to the lowest point of the energy landscape, provid-
ed the system is able to fluoresce from this point.

The above described spectroscopic techniques illustrate simple examples of us-
age of the theory described in the beginning of this chapter. We find, that the cru-
cial quantity is again the correlation function of the environment fluctuations or its
spectral density.
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Four-Wave Mixing Spectroscopy

The previous chapter has dealt with the spectroscopic techniques whose theoretical
description could be achieved within linear response theory. Absorption spectra
could be understood as a result of a single perturbative interaction of light with the
system originally in equilibrium. Spontaneous emission or fluorescence could also
be understood in terms of a single perturbative interaction of the quantized light
with the system, this time in an electronically excited state. The preparation stage of
the excited state was not included in our description of fluorescence assuming that
the system has enough time to equilibrate in the electronic excited state before it
is likely to fluoresce. The more precise description of fluorescence should take into
account details of preparation of the excited state, which is included in this chapter.
Such a description is presented using the nonlinear spectroscopy formalism, what
leads to the time-resolved fluorescence method. In the following sections we will
discuss nonlinear techniques, which are mostly related to the four-wave mixing
type of signals generated by the third order nonlinear response function.

15.1
Nonlinear Response of Multilevel Systems

We already know how the response functions relate to the spectroscopic signal
which is measured (see (13.51)). The response functions have a certain structure
that we will investigate and make use of in this section. We will first disregard the
details of the system-bath interaction. This interaction will be formally included
by evolution superoperators, but our discussion will be centered on the structure
given to the response functions by a set of states that are interesting from the point
of view of the spectroscopic experiment. These states are connected by optically
allowed transitions. The rest of the system is then responsible for effects of energy
relaxation and dephasing.
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15.1.1
Two- and Three-Band Molecules

The full third order response function expression was derived in Section 13.1
(see (13.22)) and is given by

SONt3, 1y, t1) = DTt { Laldmat (£3) V3Umat (£2) Valdimat (£1) Vi Peq | - (15.1)

Here we denoted the order of interactions by /i ; or V;. j = 4 denotes the last emis-
sion step, peq is the full equilibrium density matrix. The response function tells us
that the third order nonlinear signal is constructed by acting three times by V at
the initial density matrix corresponding to the electronic ground state, followed by
the emission step through the last polarization operator /i acting on the left in the
Hilbert space, and finally taking the trace. In the Hilbert space using the Heisen-
berg representation we have the response in terms of the four-point correlation
functions (13.24)—(13.27), (for convenience these are repeated here by additionally
labeling the interaction order inside the trace)

Ri(ts, ta, t1) = Tr {fla(t1)fts(t + t2)fla(ts + t2 + t3)01(0)Peq) » (15.2)
Ry(ts, ta, t1) = Tr {@1(0)ft3(t1 + ta)@a(ts + t2 + t3)a(t1)Peq) » (15.3)
Rs(ts, ta, t1) = Tr {1 (0)a(tr)fta(tr + t2 + t3)it3(t1 + t2)Peq) » (15.4)
Ry(ts, ta, t1) = Tr {fLa(ts + t2 + t3)3(t1 + t2)fi2(t1)41(0)Peq) - (15.5)
and
4
SOV (ts, ty, t1) = 120 (11) 0 (£2) O (t3) Z (Ra(ts, ta, 1) — R%(t3, 12, 1)) - (15.6)
a=1

Now i ;(t) is the transition dipole in Heisenberg representation representing
the jth interaction with the field with respect to real time. For the trace to be
nonzero, the final matrix under the trace needs to have nonzero diagonal ele-
ments. The transition dipole moment operator i facilitates transitions between
electronic states. Using this ordering of operators inside the trace in (15.2) to
(15.5), the transitions (going from the right side) have to start from the ground
state and have to finish in the electronic ground state where they started, because
the density operator is at the right-most position under the trace. While this or-
dered form is convenient to reflect the form of the four-point correlation function,
the proper reordering with respect to time implies that the action on the density
matrix is either on the left or on the right at different time moments. The last
J = 4 emission step occurs always in the left as indicated by (13.22).

In the following we study the systems whose levels construct several bands. The
lowest band is the electronic ground state g, or a set of closely-lying states. There
is another band of states separated by a wide energy gap above the g band. We
call the this band the singly-excited levels e. And the third band is denoted as the

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

Chap. c15 — 2013/6/3 — page 317 — le-tex

|fn)
0 w(99) | vir(ge) waf)
_______ R Wieg) W | yplen
len) W=
S 2l I W) wre) w ()
Q
' l9)
(@) (b)

Figure 15.1 Energy level structure of a three-
band electron system (a), the block structure
of its statistical operator W (b), and the tran-
sition dipole operator g (c). The three-band
model consists of the ground state |g), a
band of excited states |e,) separated from
the ground state by the wide gap possible to
overcome only by the optical transition ener-
gy quantum 7R, and another band of states

15.1 Nonlinear Response of Multilevel Systems

10 : aee) 0 |
e T e
a0 gD

p=lErn
I | I
I ! ! !
) : alfe) : 0 |
| |
C_ l_____ |
(9

| fn) separated by another energy quantum

£ 92 (all states depicted by full lines). Energy
relaxation is allowed within the bands, but
not between the bands or to other states with
nonresonant transitions (dashed lines). The
statistical operator W, therefore, has a block
structure (center of the figure) with nine inde-
pendent blocks connected by optical coupling
only.

double-excited band f (see Figure 15.1). This distinction becomes obvious if we
consider an arbitrary experiment performed with the beam of light having a carrier
frequency € that is close to the energy gap between the nearest bands. The light
can then induce transitions between g and e and between e and f. In this type
of experiment, states lying even higher or between the bands would not be able
to contribute to the third order as they would not contribute to the final trace or
would be off-resonant. We can, therefore, limit our consideration just to three-band
systems.

An important example of a generic molecular system which fits the above de-
scription is represented by excitonic aggregates studied in Chapter 5. In these
aggregates some relatively simple molecules (chromophores) are bound togeth-
er noncovalently, and held at well defined positions by some specific geometrical
constraints, be it self-organized structures or determined by protein scaffold. Be-
cause of the mutual electrostatic interaction, the complex has different spectroscop-
ic properties compared to the individual chromophores (for example, in solution).
The states of the aggregate can be well classified using the states of individual chro-
mophores. The aggregate with N chromophores is said to be in its ground state |g)
if all its constituting chromophores are in their ground states |g;). The first ex-
cited band is formed of the states |ej) which include one excited chromophore
and the second excited state band is formed by the state | fi;) with two excited
chromophores. These levels represent three well defined bands as shown in Fig-
ure 15.1.

The evolution superoperator elements in (15.1) can be also organized into blocks
according to the bands. As the light transfers the system between nearest bands,
the density matrix breaks up into nine blocks (see Figure 15.1) to which we can
assign corresponding blocks in the evolution superoperator. We further assume
no direct relaxation between the bands, so no evolution superoperator connects
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two different blocks of the density matrix. Thus, for example, (9 (7) will be the
block of the evolution superoperator governing the evolution of the populations
and intra-band coherences inside the e-band, which is in turn described by the
density operator block W (). Whenever we need to evaluate the evolution of the
density operator block in detail, we can go back to the indices of the individual
states, so we can write, for example,

ee)

(T + to) Zumnm(f 59 (ko) (15.7)

m, n, k,| run over the singly-excited band, or, using shorthand notation, we will
use

\f(/(ee)(.[ + to) = U (1) \)A(/(BB)(tO) (15.8)

with the same meaning. The superscript (ee), represents the time evolution which
starts in the “diagonal” block, (ee), of the statistical operator, and finishes in the
same block.

One important property of the statistical operator is that its off-diagonal blocks,
for example W (8(t) or W (¢f)(t), oscillate with a frequency similar to £ and the
block W (/8)(t) oscillates with ~ 282 . The evolution superoperator has to reflect this
fact and corresponding frequencies are indeed imprinted in its time dependence.
For further manipulations with these blocks we can explicitly subtract this fast fre-
quency component and introduce slowly varying envelopes (the Rotating Frame)
as in the following example

U (1) = U )e™ 2t Uty = ulfe(1)e 122t (15.9)

From now on in this chapter, all superoperator blocks appearing with tilde as above
will represent these slow envelopes.

The second quantity which appears in the response function in both the operator
and superoperator form is the polarization superoperator V and the corresponding
polarization operator (. The polarization operator is essentially a dipole operator,
because we assume that the molecular length-scale is much shorter than the optical
wavelength. As this operator mediates transitions between bands, it has a block
form as in Figure 15.1. Matrices can be multiplied in blocks, and thus it is easy
to verify that the action of the transition dipole moment on the density operator
transforms one block into another. With the transition dipole moment operator

i = ue) (gl + u9| f)(e] + hec., (15.10)

where h.c. stands for the Hermite conjugate, we have, for example, j W (8¢)
fue8) W8 = Vi(8), Similarly, we can show that off-diagonal blocks are trans-
formed into diagonal ones by the action of the dipole moment operator from left
or right. In the superoperator notation we have, for example,

A N

VW (88) — leggs) vy (g8) _ y(gegs) iy (g8) — vy (e8) — vir(ge) (15.11)
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Here we also introduced a block notation for the dipole moment superoperator V.
It must have four indices as it transforms one block (gg) into another block (eg)
or (ge). Action of the transition dipole moment on a block of the statistical oper-
ator yields contributions to its two different blocks, and the notation denotes the
transformation performed by the superoperator on the band indices, for example,

(eggg) = (eg) < (g8)-

15.1.2
Liouville Space Pathways

Let us study the third order response function given in (15.1). As we have already
discussed, the response functions consist of sets of transitions and propagations
between them by evolution superoperators. In electronic spectroscopy we always
start with only the electronic ground state populated because the optical transition
energies are much larger than the thermal energy, 72 > kpT. The tracing re-
quires that after all actions of the dipole operator, we end up at the same initial
ground state in the time-unordered representation of (15.2)—(15.5) or the densi-
ty matrix ends in a population state in the time-ordered representation of (15.1).
This means that there are only certain Liouville space pathways through the states
of the system that can contribute. These pathways connect specific density matrix
elements or density matrix blocks.

Let us consider (15.2)—(15.5) and let a and b denote bands or individual ener-
gy levels and let us draw the following diagram (Figures 15.2 and 15.3). A density
matrix element in Figure 15.2 is depicted by a circle with two letters denoting the
element of the matrix. The action of a dipole moment operator from the left-hand
side changes the left index of the density matrix and, similarly, its action from the
right-hand side changes the right index. In the diagram we denote the action of

@
a) (b)
Figure 15.2 Liouville space pathway diagram:  states after zero, one, two and three perturba-
possible pathways starting with the electron- tive interactions with the field. Independent
ic ground state |g) in a two-band system are pathways with “+” overall sign are shown in
shown in (a). The dashed lines connect the (b).
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Figure 15.3 Liouville space pathways similar to Figure 15.2. Here we show additional pathways
that become possible in a three-band system (a). Independent pathways with “+" overall sign
are shown in (b).

the dipole operator from the left side by a downward pointing arrow and the corre-
sponding change of the left index. The action on the right side is denoted by a right
arrow that changes the right-hand side index. Each commutator V in (15.1) corre-
sponds to a fork of the two arrows, to the right-hand side, or downwards. Dashed
lines indicate the propagation intervals.

In a system with two bands, g and e, all possible pathways are shown in Fig-
ure 15.2a. There are only three possible configurations of system states possible:
gg, ge, eg = (ge)™ and ee. In time intervals #; and t; the system is always at inter-
band coherence while during t, we have populations gg or ee. In a three-band
system, some additional pathways become possible since we can have transitions
e — f. These are shown in Figure 15.3a. We thus get possible fe and fg coher-
ences that can be probed at time intervals t; and t,, respectively. The last interaction
in (15.1) is always on the left, so the last arrow must go down to some population
state (ggor ee or f f).

The Figures (15.2) and (15.3) show that there are 16 possible Liouville pathways
between the three bands that can be traveled by three actions of the dipole moment.
The elements (ab) and (ba) correspond to mutual Hermite conjugated blocks of
the density matrix, and, therefore, the pathways that are mirrors of each other with
respect to the diagonal line of the diagram have mutually complex conjugated con-
tributions. Moreover, those pathways that involve an odd number of dipole operator
actions from the left-hand side carry a minus sign, which originates from the sec-
ond term of the commutator. We have, therefore, eight independent contributions,
four of which contain only bands g and e, and four of which also include the f
band. There are four pairs of pathways with a plus sign that differ by exchanging g
and f and which correspond to four different orderings of left- and right-hand side
actions of the dipole moment. We denote the contributions to the total response
function by a letter R with a lower index 1, ..., 4 denoting the four independent or-
derings of interaction from the left and right, that is, the four independent shapes
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of the Liouville pathways in Figure 15.2. Compared to (15.6) we introduce a second
index g or f to distinguish pathways which do not reach the f-band from those
that do, respectively. Thus, instead of (15.6) we write the total third order response
function in a form:

4
S( )(t3, tz, tl) = 1 0(t3 tz 0(t1 Z Z na t;, tz, tl) :’:a(t:;, tz, tl)] .
n=la=g,f

(15.12)

Now it is convenient to explicitly write down individual Liouville pathways and
evaluate them using the evolution superoperators. In the third order to the field,
following Figure 15.2 we then have

ng(ta, ty, t) = Tr {/ft(ge)z;l(eg)(ta)V("g“)Z/?(”)(tz)

x Yleees)yes) (1) lesss) V%,(gg)} e—i@(htt) (15.13)

Rzg(t3, th, 1) = Tr {ﬂ(ge)z;l(gg)(t3)V(6g33)Z](55)(t2)

x v(wg@)[;{(ge)(tl)v gege) W gg)} Q(13—h) (15.14)

Rag(ts, o, 1) = Tr {ﬁ(ge)g(eg)(ta)v(eggg)g(gg)(tz)

x VIegsIgy(e) (1)) lsese) \f(/(gg)} e—iQ(1—h) (15.15)

Rug(ts, ta, t1) = Tr {la(ge)[;{(eg)(ta)v(eggg)d(gg)(tz)
X v(ggeg)g(eg)(tl)v(eggg)\f(/(gg)} e iR +1) (15.16)

This is the set of pathways for a two-band system where f is excluded. Each of
these pathways is composed of a possibly large number of different sub-pathways
between individual levels within the bands. Notice that during the interval ¢, of the
response, the system evolves according to an evolution superoperator of either the
excited state band or the ground state band. For bare excitonic systems (Chapter 5),
the ground state band is composed of just one level; however, the dynamics of an
arbitrary realistic system also involve evolution of the reservoir degrees of freedom.
The evolution inside the bands can have a form of energy relaxation and transport,
as well as coherence dephasing. This evolution can be accessed in some types of
FWM experiments.

The existence of f band leads to an excitation of the system from the band e to a
higher lying band f. This adds an extra set of pathways whose contributions are

Ruf(ts, 1, 1) = Tr {@U0 0000 15 VieS 70 1)

x Pleeeglyyle g)(t )V(eggg)\fv(gg)} e i2(h—t) (15.17)
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sz(tsy ty, 1) = Tr {ﬂ(fe)z;l(gf)(ts)V(gf“)Z/?(“)(tz)

x Vleegelyyled) (1)) (eess) \f(/(gg)} el Q(t+13) (15.18)

Ryf(ts, tp, 1) = Tr {ﬁ(fe)zj(‘ff)(t3)v(€fgf)z;{(gf)(tz)

x V0eFeayled) (1) leese) \fy(gg)} i@ (hF2t+1) (15.19)

Rif(ts, b 1) = Tr {ﬁ(ge)g(eg)(ta)v(egfg)g(fm(tz)
x YU BRI (1)) legse) \f(/(gg)} eTi2t2ntn) (15.20)

The eight functions Ry, ..., Ryg and Riy,..., Ryr and their complex conjugate
parts completely determine the third order response of a three-band system and
thus describes all possible FWM experiments.

Individual contributions to the response function, the Liouville space pathways,
can be conveniently visualized by the double sided Feynman diagrams. A double sid-
ed Feynman diagram carries at least the same information as the diagrams in
Figure 15.2b. Additional information which completely determines the Liouville
space pathway characteristics, for example, the frequencies of the transitions and
the interaction field wavevectors, can be included after performing the rotating
wave approximation (selection of resonances) with respect to specific optical fields.
Figure 15.4 shows Feynman diagrams compared to the Liouville pathway diagram
from Figure 15.2. The two vertical arrows denote the time evolution of the ket and
bra of the system’s density operator (time is running upwards). Each horizontal
bar denotes the time when an interaction with the external field (in other words,
multiplication of the statistical operator from left or right by the transition dipole
operator) occurs. The ket and bra after each interaction are denoted. The last arrow
(from the bottom to top) represents the action of the transition dipole moment op-
erator /t, which we wrote to the left-most position under the trace in the response
function. The position of the last arrow is convenient at this point, and we will keep
it on the left for the pathways that yield relevant response.

15.1.3
Third Order Polarization in the Rotating Wave Approximation

In the previous section we have treated the response function separately from
(13.16) which connects the response function with the third order polarization.
One can easily verify that the product of three electric fields in (13.16) carries phase
factors similar to those of the Liouville pathways. The polarization is obtained by
integrating the product of the response functions and the fields. Because we have
assumed that the optical frequency £ is similar to the inter-band energy gap, the
terms where optical frequencies match the response function frequencies and they
overall cancel out, should yield a much larger contribution to the convolution in-
tegral in (13.16) than those where some highly oscillatory factors remain. All the

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



Chap. c15 — 2013/6/3 — page 323 — le-tex

15.1 Nonlinear Response of Multilevel Systems
if leY(el  Rag lg)(gl  Rag lg)¢
|F)]ts (el le)|¢3| (gl le) |t (gl

®
CO®
®
®-©®
©
®
®
©-©
§ @,
S

o[t (el [t [¢el )|t
l9) (9] l9) (9] l9) (9]
5 el Rig gl Rig  lg)l
, @
o Dl o e\t (g1 & sl
o e I o 7 L ol
e[t (gl et [(9] et (gl
& &
lg) (gl l9) (9] lg) (9]
Ry o)l 5 e
@ Nule @ lelEl
Q@ Flele @ 1n|tll
@ Tl @@ Tl
© l9) (gl l9)(g

Figure 15.4 Feynman diagrams for resonant interaction configurations when all fields have
approximately the same carrier frequency. Liouville pathways are indicated as well. Incom-
ing/outgoing arrows denote absorption/emission events.

oscillating terms under the integral will, therefore, be neglected. This is usually
denoted as the rotating wave approximation.

In the remainder of this book we will consider time-resolved techniques per-
formed with several short laser pulses. In that case it is convenient to introduce a
Gedankenexperiment (a thought experiment) as follows. Let us assume the incom-
ing electric field to be formed of three pulses with envelopes depicted in Figure 15.5,
that is

3
E(r,t) = Z Ej(t— rj)eikf"_ig(‘_”) +cc
j=1

where c.c. denotes the complex conjugated term. Then each interaction between
the system and the field, represented by V in the response function, happens with
a distinct optical pulsed field. Later we can associate these “virtual” pulses with the
physical pulses of the laser when we describe a realistic spectroscopic measure-
ment.

The cubic form of electric fields

E(T, t—1t3— 1) — tl)E(T, b — 13— tz)E(T, t— t;) (1521)
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Ty

15

\ A

Figure 15.5 Pulse scheme of the time-ordered
four-wave mixing experiment when pulse 1is
first, pulse 2 is second, and pulse 3 is third.
The excitation pulses are centered at times
71, T2 and 73. Since the time axis can be tak-
en with respect to the specific rule, we can
choose 73 = 0. The third order signal at
time t is then an integral over contributions

from all possible combinations of delays t1,
t; and t3 such that are positive. Notice that
this setup of pulses is the so-called gedanken
or thought experiment. The pulses 1, 2, and 3
here are the sources of interactions construct-
ing the response function. Later, for various
experiments, we associate these virtual pulses
with various real pulses.

enters the third order polarization (13.16). Each of them is a sum of three optical
pulses. The whole product will thus be a sum of 3 x 3 x 3 = 27 terms. However,
notice that in the FWM scheme we only have several distinct output wavevectors,
which can be distinguished by a specific outgoing direction (wavevector). These are
(the total oscillatory frequency of the configuration is also given):

kie 2 2ki —k, & 2 2k, — k3 & 2
3k1 © 3Q | 2k +ky & 32 | 2k, + k3 & 32
k, e 2 2ki1 —k; & 2 2k; — k1 & 2
3ky © 3Q | 2k + k3 & 32 | 2k;+ k1 & 32
k; & @ 2k, — k1 & 2 2k; —k, & 2
3k3 ©3Q | 2k + k1 & 32 | 2k;+ ky & 302

—ki+ky+ k3 Q

ki—ky+ ks & Q

ki +k—k; & Q2

ki+k +k; <302

The set of wavevectors with opposite directions generates conjugate responses.
The first thing that we observe is that the configurations that have frequencies 32
are off-resonant with our form of the response function (since we do not include
this type of triple-frequency optical transition). The second observation is that the
wavevector configuration 2k; — k, can be obtained from ki — k; + k; if we take
k1 = ks. It thus follows that the most general third order independent signals with
our response function are

kIE—k1+k2+k3,

ki =k —ky + ks,

(15.22)

(15.23)
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kIII = kl + kz - k3 (1524)

and others will be given by these three.
Let us consider —k; + k; + ks. This configuration appears from six types of field
permutations. We may have

Ei(rt—ts—ty — ) Ex(r, t — 1 — ) Es(r, t — t3) (15.25)
or

Ei(r t—ts — by — ) Ey(r,t — t5 — 1) Eo(r, t — 13) , (15.26)

Ex(rit—t—ty— t) Es(r, t — t5 — b)) Ey(r.t — 1) , (15.27)

Ey(rt—ts—ty — ) Ey(r,t — t — ) Es(r, t — t3) (15.28)

Es(rt—t;—ty — ) Ex(r, t — t — ) Eq(r, t — t3) (15.29)
and finally

Es(r,t—ts — bty — ) Ey(r,t — t5 — 1) Eo(r, t — 13) . (15.30)

The corresponding phase factors containing t, t5, t3 (over which we integrate) or-
dered in the same way are

exp(if2 (—t1 + t3)) , (15.31)
exp(iQ (—t; + t3)) , (15.32)
exp(if2 (t3 + 2t + 1)), (15.33)
exp(if2 (t + t3)) , (15.34)
exp(i (1 + 2t + 1)), (15.35)
exp(i® (t + t3)) . (15.36)

The Liouville pathways, (15.13) to (15.20), have similar phase factors in variables 3,
t, and t;. If a given Liouville pathway does not have a phase factor which cancels
the phase factor of the field, it brings only a very small contribution to the integral.
We will, therefore, take only such contributions where the cancelation occurs and
the rest will be neglected.

The electric field enters (13.16) three times with three different time arguments.
Let us define the delays between incoming pulses as Ty = 7, — 71, Th = 73 — 13
and abbreviate the expressions as follows:

EV@) = &i(t+0—ts—t—t), (15.37)

EJ(.Z)(I&) =E(t+0—t3—1), (15.38)
and

ED@) =&j(t+0 —ts). (15.39)
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For the third order polarization in RWA we can now write one integral expression

o0
Pl(:\))VA(t’ Tz, Tl) % e_ig(t_Tl) // dt3dt2dt1[SR(t3, tz, tl)AR
0

+ Snr(#3, B2, t1) ANr + Spc(ts, b2, t1) Apc] (15.40)
where
A= A(ts, by, 1138, T, Th)
Ag = o790 [EV (1, 4 1) EX(T5) B (0)

+ BT+ T ED(T) EP0)] (15.41)

Axg = €209 [EPN(T, + 1) B (1) B (0)
+ BT+ T E () BN O] (1542
and
Apc = el @B +22n+ien [E1(3)*(T2 + T1)E2(1)(T2)E3(2)(0)
+ BT+ TEM(T)EN )] (15.43)

Here, we have collected the Liouville pathways into groups according to their char-
acteristic oscillating phase factors. Thus, we have the rephasing

Sr(t3, t2, t1) = Rog(ts, ta, t1) + R3g(t3, 12, t1) — Rl*f(t3, ), t1), (15.44)
the nonrephasing

Snr(ts, ta, t1) = Riglts, t2, t1) + Ragl(ts, ta, t1) — Ry (83, ta, 1) , (15.45)
and the double quantum coherence

Soc(ts, t2, t1) = Rag(ts, b2, 1) — Rif(ts, b, 1), (15.46)

pathway groups.

Equation (15.40) enables us to calculate the signal for any third order nonlinear
experiment employing a three-pulse sequence with arbitrary pulse shapes for ar-
bitrary pulse ordering. The reason why the complex conjugated pathways with the
minus sign appear in (15.44)—(15.46) is that their particular phase factors cancel
with the fields. One can notice that the pathway R;; is nonrephasing, while the
pathway Ry s rephasing. This is easily explained by considering the involved
transitions. While in R;, we have e '?«"171%«%  the R;; pathway must have
e weh—loefls From Figure 15.1 we have w,f ~ —w,, and thus the phase factor
turns into e "'« ®«! which has to be complex conjugated in order to cancel
with field factors.
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The notation that we introduced in (15.37) to (15.39) and Figure 15.5 enables us
to understand the origin of the individual contributions. The upper index a of E}a)
denotes one of the three interaction times. The value a = 1 corresponds to the
first interaction, a = 2 to the second and so on. In (15.41) to (15.43), we insert the
envelopes of the fields in an order in which the pulse centers arrive at the sample
(from left to right). The order of the lower indices on the envelopes is, therefore,
always 1 — 2 — 3. The upper indices correspond to the order in which these pulses
actually interact with the matter. We can see that for instance the nonrephasing
contribution originates from the order 2 —1—3 and 3 — 1 — 2 and so on.

15.1.4
Third Order Polarization in Impulsive Limit

The laser pulses usually employed to excite molecular systems in laboratory real-
izations of the third order spectroscopy may be very short, sometimes with just
a few cycles of the optical oscillation within the pulse envelope. It is, therefore,
often advantageous to assume the nonlinear response originating from excitation
by such a short pulse. In order to keep the resonance properties of the pulses in
place, the “short pulse” has to be understood as “slowly” varying with respect to the
optical frequency, while it is short with respect to slowly varying system dynam-
ics. It is, therefore, only allowed to have the Dirac delta function properties with
respect to the slow envelopes of the response functions. Such delta function is of-
ten referred to as the physical delta function (see a discussion for example in [26]).
Equation (15.40) can be significantly simplified by this short pulse assumption.
Most importantly, one can immediately see that for different pulse orderings, dif-
ferent types of Liouville pathways contribute to the signal. Let us first assume that
the pulses arrive in time ordered as ki, k;, k3 (we will denote this ordering as
1—2—13). As they are short, their overlap can be neglected. This means that T; > 0
and T, > 0 in Figure 15.5. We now have six combinations of the pulse envelopes
in (15.40), but only one of them yields a nonzero integration value. Let us examine
the first term in (15.41), that is

E+ T+ Ti—t3—th— 1)E(t+ Th — t3 — 1) E3(t — t3)
HO(t+ T+ Ti—t3—ty—t)0(t+ Th—t3 — £)0(t — t3) . (15.47)

This term yields the conditions:

b+ T+ Ti—ts—t—t =0, (15.48)

b+ To—ts—t, =0, (15.49)
and

t—t;=0 (15.50)

for the integral in (15.40) to give a nonzero contribution. Equations (15.48)—(15.50)
can be easily satisfied by t; = t, t, = T, and t; = T; and the contribution to the
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polarization thus yields:
PULA(E To, Th) ~ e 0T Se (1, Ty, Ty) (15.51)

The second term in (15.40) which corresponds to the role of the second and third
pulses switched, similarly yields the conditions t + T, + Ty — t3 — t; — t; = O,
t—t;—1t, =0and t + T, — t3 = 0. This can be satisfied by t; = t + T3, t, = — T,
and t; = T + Ty, and ¢, has to be negative. For negative t,, however, the response
functions are zero. Similar conclusions will be reached for all other integrals.

Switching the order of pulses into (1 — 3 — 2) will yield the rephasing signal as
well. We can, therefore, conclude that for both orderings (1 —2 —3) and (1—3—2)
only the rephasing Liouville pathways contribute to the signal. This has an im-
portant implication in the description of the experiment. If we measure a signal
emerging into the phase-matched direction ks = —kq + ky + k3, and if the pulse
with the wavevector k; is guaranteed to arrive at the sample first, the response
function responsible for the signal will be always of the rephasing type.

Let us now switch the order of the first two pulses to yield ordering (2 — 1 — 3).
Following the same arguments the reader can check that this ordering yields the
nonrephasing contribution. The very same conclusion is reached for the pulse or-
der (3—1—2). This means that in the direction k; = —k1+ ky + k3 = ky — k1 + k3,
if the pulse k; is guarantied to arrive as second, the corresponding signal is al-
ways of the nonrephasing type. For a given direction we therefore conclude that it
is possible to selectively probe the rephasing or nonrephasing group of Liouville
pathways.

In an experimental arrangement when the pulse k; precedes k, we measure the
response Sg in the direction —k; + k3 + k3. One can of course redefine the indices
of the directions as well. If we denote the original direction k; by k) and vice versa
(k; =k, k'2 = kq, k’3 = k3), and keep the order of pulses in time intact, we realize
that in the direction —k/ + k) + k5 = ki — ky + k3 we measure the non-rephasing
response Syg.

The third pathway Spc contributes to the signal only when the order of the pulses
is (2—3—1) or (3—2—1). The Spc pathways contain a fast oscillating term canceling
the 222 term in the field factor which appears in the orderings (2 — 3 — 1) and
(3—2—1). Although the oscillations during the population interval t, are very fast,
they also survive RWA. This signal is emitted into —k; + k, + ks only if the last
of the interacting pulses is k. It is also a basis of certain spectroscopic techniques
aiming at exclusively studying the properties of the higher lying excited states.

Summarizing these conclusions we thus find that we can request the strict pulse
ordering such that pulse 1 is always first, pulse 2 is always second, and pulse 3 is
always third. Then the rephasing signal will be measured in the phase matching
direction k; = —kq + k; + k3, the nonrephasing signal will be measured in k;; =
k1—k,+k; and the double quantum coherence will be measured in kyj; = k1+k,—
k3. These are three independent types of measurements in the FWM experiment
and all other FWM experiments can be given in terms of these three techniques.
The natural variables of the measurement are the delay times between the pulses.
The induced polarization amplitude is given by the corresponding contribution to
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the response function and the variables of the response function ty, t;, t; become
equivalent to the delay times between the ordered pulses.

15.2
Multilevel System in Contact with the Bath

Now that we have completed the discussion of the relation between the response
function, excitation fields and the generated induced polarization (the signal in
the heterodyne detection scheme), we can turn our attention to the effects of bath
degrees of freedom and the measurement of relaxation phenomena. The formulae
for the response function contain evolution superoperators which we could easily
represent in the basis of electronic states. However, the evolution superoperator
matrix elements would in this case still be operators on the Hilbert space of the
bath degrees of freedom. Only after tracing the response functions over the bath,
we obtain the observable response function.

First, we will concentrate on the response in the so-called adiabatic limit, that is,
when the bath induces fluctuations of electronic energies [100]. In this case we have
only the pure dephasing effect and the bath-induced transitions between electronic
states are forbidden. For the evolution superoperators we then have either

U5 (1) = 010 umOrmlie) (1) | (15.52)
or
U (1) = OkmOra(l — )AL (1) - (15.53)

The former elements describe the evolution of populations, while the latter de-
scribe the evolution of coherence. One would be tempted to conclude that

Uitlb) =1, (15.54)

because we expect the populations to remain constant in this limit. However, one
should not forget that Z;ll(;glik(tz) is an operator describing the evolution of the bath
degrees of freedom. The bath can undergo reorganization after the system was
excited, without the population of the excited state changing due to relaxation. As-
suming also that

Higigt) = duldls) (1529

for the evolution of the optical coherence elements, we find that the total response
of the multilevel system in the adiabatic limit splits into two contributions, where
one corresponds to the evolution of populations in the t, interval, (15.52), and the
other to the evolution of coherences, (15.53). For instance, for the pathway R,, we
thus get:

coh]
Rag(ts, ta, 1) = ROV (b3, by, 1) + RY (b3, b2, 1), (15.56)
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where

Ré‘;""’(ta, ty, t) = 1° Z UgkMighgktig
P

< Tr {ukeg) (ta)ukkkk(tZ) £ (t1) We }e_iwkg(‘s—h) )

gkg gkgk

(15.57)

and
R(coh)
(t3, t2, t1) = 1 Z/"glﬂgkﬂlg/,tkg
k£l
x Tr {ulglg;(h)Z/?l(]i?k(tz)aéilzk(tl) Weq} e_iwlg‘3+iwkg11 )
(15.58)

This distinction will become very significant when considering separately energy
and phase relaxation.

15.2.1
Energy Fluctuations of the General Multilevel System

Let the system be given by a set of the energy levels: |1), |2),...,|N). The system
Hamiltonian is thus
N
Fpot = Y _ el k) (k] (15.59)
k=1

and we assume the bath Hamiltonian Hp to represent a bath of harmonic oscil-
lators, which induce fluctuations of system energies. The system-bath interaction
in general is given by the same linear coupling energy gap operators as in (14.11),
and we define the fluctuations of all states with respect to one specific state — the
ground state as the reference

AVii(t) = U (1) (ﬁk - I:Ig) Ug(t) — haovgg (15.60)
= > AV lk)(k (15.61)
k

We additionally take into account that the bath is in equilibrium with respect to
the electronic ground state. The ground state energy thus becomes constant. Since
different states are not coupled to each other, the evolution of the system in a giv-
en state is adiabatic, i.e. the potential surface of different states do not intersect. It
turns out that the optical response function for this system can be exactly calculat-
ed.

The system third order response functions Ry (ts, t2, t1), ..., Ra(ts, t2, t1) (13.24)—
(13.27) can be written as four-point dipole correlation functions. They contain four
interactions at specific times, and consequently three delays between interaction
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times. We can express them using a single function

Ri(ts, ty, t1) = CW(ty, t1 4+ ty, t1 + 15 + 13,0), (15.62)
Ry(ts, ty, 1) = CW(0, 1y + to, g + 1y + 13, 1) , (15.63)
Rs(ts, ty, 1) = CW(0, 11, 1 + 1y + 13,81 + 1), (15.64)
Ry(ts, ty, t1) = CO(ty 4+ ta + t3, 1 + t2, 11,0) , (15.65)

where the function
C¥(t4, 73,72, 71) = Tr (@(Ta) i (T3)0(T2) 1 (71)) (15.66)

is the four-point correlation function. This case is described in detail in Ap-
pendix A.8. For the dipole operator

asb
i=> wala) (bl (15.67)
ab

and for an isolated ground state |g) we obtain the general cumulant expression for
the four-point correlation function

C(4)(T4, 73,72, T1) = Zﬂgdﬂdcﬂcbﬂbg
bcd

X exp[—ieqT43 —1€,T3p —i€pT01

+ fachg(Ta, T3, T2, T1)] (15.68)
where 7;; = 7; — 7; and
Sacvg(Ta, 73, T2, T1) = —gaa(Ta3) — Gee(T32) — Gob(T21)
+ 8ac(T32) + Zac(T43) — 8ac(T42)

)
)
— 8an(T32) + Zan(T31) + gan(T42) — gan(T41)
+ geb(T21) + geb(732) — Gen(T31) - (15.69)

Notice that the ground state in this expression has zero energy, it is not fluctuating
and all g-functions including the ground state vanish. For the three-band system
the summation indices run over g, e, f bands. Compared to the lineshape func-
tions of Section 11.5 we now keep only two indices for the lineshape function. So
8aa,bb = Lab-

We can now associate all distinct Liouville space pathways to the function C*)
by adjusting its time variables and various contributions can be calculated for the
given lineshape function g(t).
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15.2.2
Off-Diagonal Fluctuations and Energy Relaxation

Consider now additional off-diagonal fluctuations. Due to off diagonal elements of
the Hamiltonian the evolution in time mixes different states. Hence, the system dy-
namics now includes population transport, and the system cannot be described us-
ing only the adiabatic evolution operators. We have two types of dynamics now: the
coherence evolution and the population transport. From the beginning we make
two approximations: First is that the off diagonal fluctuations are independent of
each other. Second, we adopt the secular approximation. In this case for the off
diagonal elements of the density matrix — the coherences — the off-diagonal fluc-
tuations induce only lifetime-induced dephasing as in Section 14.5. We can, there-
fore, continue using the cumulant expressions for the evolution of density matrix
coherences. They will only be amended by additional dephasing terms originating
from the off-diagonal fluctuations. For the diagonal terms of the density matrix —
populations — the off-diagonal fluctuations induce population transport which can
be described using the Pauli master equation, with rates calculated by some of the
methods introduced in Chapter 11.

Consider the Liouville space pathway (or the Feynman diagram) when starting
from the ground state |g)(g| the system first interacts on the left side and the elec-
tronic inter-band coherence |e;)(g| is created and it propagates during t;. As we
are interested in population, let the second interaction happen on the right creat-
ing electronic population |e;)(e;|. As the population transfer is now allowed, in the
second interval t, this population can be transferred to the state |e r) (e | with the
probability G, ., (t2). We can assume the next transition to occur on either side of
the density matrix. Hence, we can set the resulting inter-band coherence to be of
the general form |b)(c|, which can be later assigned to one of |e)(g], |g) (el | f)(el,
or |e){ f|. The contribution to the response function of such population-transport
pathway is then given by [101]

T(ts, 12, 11) = —()° D HebttwwtteightegGepei(12)FLy, o, (B3, 12, 1), (15.70)

che’e

where vv” has to be changed to e sb when the signal is generated on the left side
of the diagram, and to ce s, when it is generated on the right. G, ., (t2) when ey =
e; is the population survival probability. The phase function is determined by the
cumulant expansion with respect to the diagonal fluctuations:

1 . .
]:éb)efei(t:" to, tl) = exp I:la)cbh — la)elgtl

— e+ B — vt + f (B m)] (15.71)
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where

fc(l{z)el(tb 12, 1) = —Zeres (1) — Zob(ts) — gro(t3)
— Bbe; (b1 + B2 + £3) + Zhe; (b1 + t2) + Goe; (F2 + 13)
+ Zee; (b1 + B2+ 83) — e (b1 + £2) — Zeei (P2 + 13)
+ gen(ts) + g:c(h) + geei(2) — Bbei (1)
+ 20Im [gee (t2 + 13) = ooy (t2) — Geef (£3)
— Ghey (b2 + 13) + e, (t2) + e, (13)] - (15.72)

v, is the dephasing constant due to the state lifetime

_ 1Kl
ol

Yv

(15.73)

The population Green’s function is a solution of the Pauli master equation

Ge’e(t) = Z Ke/j Gje — Z Kje/ Ge/e S (1574)
JjFEe jFe

where K;; are the population transport rates. This equation can be represented in
the matrix form

d 4 2 .

5, G =—KG(), (15.75)
where the population transport rate matrix is constructed as: K,, = —K,p +
Oab Zj Kjp.

Combining the adiabatic model with the transport expressions thus allows a
complete approximate description of the dynamic relaxation in optical measure-
ments. The final expressions for the three — rephasing, non rephasing and double
quantum coherence — the response functions using this approach are given in Ap-
pendix A.10.

15.2.3
Fluctuations in a Coupled Multichromophore System

In previous subsections we have described how diagonal and off-diagonal fluctua-
tions can be incorporated into the response functions. In this subsection we will
consider a general many-body system consisting of N resonantly interacting two-
level systems representing, for example, aggregates as discussed in Chapter 5. Non-
linear optical properties of such complexes of coupled chromophores (for example,
molecular aggregates, proteins and so on) are described using a Frenkel exciton
model

N N
Hs= " enBl,Bu+ > JumB} By, (15.76)
m=1 mn
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where éy'n and B,, are excitation creation and annihilation operators on a mole-
cule m, &,, and J,,, are site energy of the mth chromophore and resonant coupling
between nth and mth chromophores, respectively. In the exciton representation we
obtain the multilevel system as follows. It contains the single ground state |g) and
one- and two-exciton bands (manifolds). In the one-exciton manifold each state
is denoted as |e;) (j = 1,..., N). In the double-exciton manifold the number of
two-exciton states is N(N — 1)/2 and they are denoted as | f).

The difference of this system from the previous subsection is that now the sys-
tem Hamiltonian is essentially a nondiagonal matrix. Thus, for an arbitrary type
of coupling with the bath, the dynamics in principle is not adiabatic and processes
such as population transport and coherence decays are necessarily important.

The one-exciton Hamiltonian matrix is h(Jli = 0 re; + & Jjr, where £ =
1— 0 j describes the single excitation band. The two-exciton Hamiltonian block is
h’:i)l),(mn) = (e +€1)0kmOin+ JkmO1nCim+ JinOkmCin where k > I and m > n and
the K couplings of the aggregate (see Chapter 5) have been neglected for simplicity.
Transition from the molecular excitation representation to the exciton (eigenstate)
basis is obtained using a unitary transformations

Z Cemcenhgt)n = Ee , (1577)
Y CrmnCpuhly, = Ey . (15.78)
mnkl

The interaction with the optical field is described by the following dipole operator
a=dn (Bl + é:;) , (15.79)

where d,, is a molecular transition dipole. Applying the unitary transformation the
dipoles of inter-band transitions (eigen-dipoles) are obtained:

”ge = Z Cemdm
m
Bop = Crmn(Cenm+ Comdn) . (15.80)

Here we extend indices of C so that C¢ny = Cpum and Crpp = 0.
We next assume the diagonal molecular transition energy fluctuations of the
form:

I:ISB = szaéaé,lném ) (1581)
ma

also, each molecule has its own independent set of fluctuating coordinates uncor-
related to the other molecules, that is the correlation function matrix is diagonal,
> Zmazna = 0 and only one correlation function is then relevant

> 1zmal a(t)da(0) = C(1) - (15.82)

a
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In the previous subsection we were able to define correlation functions and line-
shape functions for all pairs of energy levels. Now we define the fluctuations of
each site: these fluctuations translate into the eigenbasis through transformations
of the type (15.77) and (15.78). It is convenient to use the spectral density (see Sec-
tion 8.6), which can be given by:

¢’ (w) = %/dtexp(iwt)(C(t)—C(—t)). (15.83)
0

In the exciton basis, we obtain fluctuating transition energies and couplings be-
tween the eigenstates. These fluctuations are characterized by spectral densities

C;:ez,e3e4(w) = (Z Celmcezmcesmce4m) C”(w) )
m

k#m
C;:ez,f3f4(w) = Z CeymCeym Z Crymk Cpymi (o),
m k

_/f,lfz,egm(w) = Cé;m,flfz(w) ’

k#m 1#m

Frnn@ =212 CamCrme || D CrmCrm || (@).
k 1

m

(15.84)

Given the correlation functions for fluctuations we are now able to calculate all
lineshape functions and population relaxation rates. This information is sufficient
to use the expressions of the previous subsection of the lineshape functions and
the linear and third order response functions can now be calculated. However, it
should be noted that all conditions of (15.68) and (15.71) are not satisfied by the
excitonic model: the diagonal and off diagonal fluctuations of excitons are essen-
tially correlated as they originate from the same molecular fluctuations. Hence the
response function expressions of Appendix A.10 should be used with caution.

15.2.4
Inter-Band Fluctuations: Relaxation to the Electronic Ground State

So far, the only transitions between the electronic ground state and the first elec-
tronic excited states we considered were the transitions stimulated by the radiation
(absorption and stimulated emission). To account for nonradiative relaxation of
the system to the ground state, or for spontaneous emission, we have to extend
the range of processes that our response functions describe. In particular we have
to include pathways in which the system is transferred to the excited state by the
first two interactions with the incident fields, but relaxes to the ground state before
the third interaction when the second interval is relatively long. The relaxation pro-
cesses ensure that the induced polarization to third order and all related signals
will always vanish for very long time #, — oco.
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(R l9){g] l9) <9l
lale Tl

/J’eg IKQE |€> ts <e| |g> tz <g|
: le)] " [(el
| [g)|t1|(el 19)|#1 | el

- 19){g] [9) (gl

Figure 15.6 Two-level system with relaxation. The two Feynman diagrams correspond to the
part of the signal from unrelaxed molecules and the molecules that have undergone relaxation
to the electronic ground state.

If the relaxation process can be described by the one-way relaxation rate K, (see
Figure 15.6), then every Liouville pathway which passes through the excited state
in the population interval t, (say Ry,) splits into two contributions. First, with the
probability e~ X2 the system remains excited, and its contribution to the signal
is the same as in nonrelaxing system. The corresponding Feynman diagram is
presented in Figure 15.6. Second, the system has relaxed to the ground state some
time during the population interval with the probability (1—e~Xs*). The probability
that it has happened in the time interval (¢}, t; + dt), 0 < ] < t, is K,.dt and all
such contributions have to be integrated.

The Feynman diagram of the relaxed contribution is depicted in Figure 15.6. The
Ry pathway, (15.14), for a two-level system can be simplified to

Rog(ts, ta, tr) = 1°|deg| "€ 17 Tr {1418 (13)04 ) (1)U 1€ (81) W,q} . (15.85)
In the presence of the relaxation, the evolution superoperator element reads
U (1) et = €=U 1) (15-86)

and correspondingly the Liouville space pathway’s amplitude decays with the relax-
ation rate as

Ryg(ts, ta, 11) lrelax = € X8 Ryg(t3, t2, 1) . (15.87)

Analogously, we write the response function for the relaxation diagram by identify-
ing the evolution superoperator term K89(t,) which transfers the population from
the excited state to the ground state. As discussed above, we have to sum contribu-
tions corresponding to the system relaxation at all times #, between 0 and t,. We
assume that the system propagated from 0 to ¢} in the excited state |e) and then is
transferred to |g) and propagated further in the ground state. This can be expressed
as

t2
K€ (ty) = Kge / Aty e (t — th) A (1)) . (15.88)
0

In order to obtain a nonzero (rephasing) contribution the interactions with electric
field after the relaxation have to be such as depicted in Figure 15.6. This corre-
sponds not to the R, diagram, but to a complex conjugation of the R; diagram as
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can be easily verified in Figure 15.2.

Ry (13, t2, 11) = 1| deg| " Tr {T11°8) (83) KB (12)U4189) (1) W}

ty
= i3|deg|4KgB/dt§
0
x T {UCE) (1)U (£ — £5)U ) ()18 (1) Weq}  (15.89)

Because there is only one interaction from the right side of the diagram the dia-
gram contributes a minus sign, and the total third order response is

SO (t3, 12, 11) = Rag(ts, by, 1) + € 82 Ryg(t3, by, 11) — Riy (b3, 12, 11) - (15.90)
Applying the cumulant expansion to (15.89) results in

R;"g(_e(t3, ty, t1) = KgeRag(t3, 1, tl)e—gee(iz+13)+gee(iz)+g2‘e(iz+ts)—g2‘e(12)

t2
X/dtée—ngtéegee(tz+t3—té)—gee(tz—té)—gé‘e(tz+ls—t£)+g2‘e(tz—t£)
0

(15.91)

Instead of going into further details, we can now prove that at t, — oo the total
signal S© goes to zero. At long times, the imaginary part of the line broadening
function corresponding to thermodynamic bath behaves linearly and thus

gee(ot =) —gee(—t) —gl (2 +t—1) + g (—1) =
2iIm {gee (2 + t3 — 1)) — gee (12 — 15)} & 2iIm geo(t3) = ity ,
(15.92)

where « is some real constant. Equation (15.91) thus yields

|

K.

Riy.(t3, ta, 1) & —Kge Ryg(ts, £, 1) = Raglts 2, 11)

t)—>

(15.93)

and correspondingly the total response S, (15.90), converges to zero at large t,
despite the fact that the R, contribution remains unaffected by the relaxation.

A similar procedure can be used for derivation of the response function of a sys-
tem with the energy transfer between the donor and the acceptor. The approach is
limited to problems with the one-way relaxation or energy transfer in which (15.88)
holds. In the case of two states separated by energy comparable to kg T, that is with
the significant back transfer rate K,,, one cannot write (89 in a simple form, and
thus the treatment of electronic energy relaxation processes within the response
function formalism beyond Markov approximation is limited to several special cas-
es.
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15.2.5
Energetic Disorder in Four-Wave Mixing

The Liouville pathways represent responses of certain combinations of energy lev-
els connected through optical transitions. In the above sections we have always
assumed that we work with a single representative molecular system. In the real
experiment, the cuvette usually contains a solution of systems of interest. We thus
have to deal with an ensemble of systems. The consequence of this setup for the
linear response was described in Section 14.6.

Let us again assume that we have the ensemble of identical copies of the systems
but their energy levels are scattered randomly around the mean values. These static,
or more generally, slow, fluctuations are then independent of the fast fluctuating
modes that cause the homogeneous broadening effects. Because of the indepen-
dence of the two types of fluctuations, as the lowest-level approach, we can assume
that the response functions could be written as product of the slow and fast parts

Ru(ts, t2, 1) = RS (13, 12, 1) RE (15, 1, 1) (15.94)
and the fast and slow response functions differ only in their corresponding sets of
lineshape functions.

Consider a two-level system with one ground and one excited state. The slow
lineshape function as described in Section 14.6 is a parabolic function of time

oW 1
g (1) = SO (15.95)
We then find that the slow part of the response is the same for all rephasing path-
ways

(slow)

2
$ts, ta, 1) = Lun(ts — 1) = e~ 27" (15.96)

RE™ (13, 1, 11) = R
and all nonrephasing pathways

R(slow) _ pl(slow) _ 1 _ _A_Z(t3+t1)z
1g (t3, t, tl) = R4g (153y ty, tl) = Im_h(t3 + tl) =e 2 . (1597)
The inhomogeneity factor Ijy,(t) thus enters as a Gaussian function that is convo-
luted with the homogeneous response function. This property comes due to deli-
cate interference of wavefunction phase rotations in the t; and t; intervals, where
in the rephasing pathways the phases rotate in opposite directions while they con-
tinue rotation in the same direction in the nonrephasing pathway. This property
becomes very important in Section 15.3.1.

We have just derived the famous photon echo effect. The rephasing nonlinear re-
sponse is equal to its fast (homogeneous) part at t; = t3, whereas the nonrephasing
response decays with both #; and t; times. Thus, if we design an experiment that
probes only the rephasing part of the FWM measurement and we keep t; = t; we
can probe only homogeneous part of the response. This is never possible in the
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linear response. Let us now discuss the photon echo (PE) effect and its observation
in more detail. We will relax the requirement t; = t; and take t, = 0. The PE mea-
surement is as follows: first we excite by a short laser pulse; we then wait for time ¢,
and send in the other two pulses (from different directions) at the same time. This
generates the nonlinear polarization, and we record the rephasing polarization as
a function of t;. As #; < t;, the intensity is proportional to exp(—(A?2/2)t?), which
considerably. However, as t; increases the intensity grows, peaks when t; = t3
according to (15.96). This peak is termed optical echo. The signal intensity as a
function of t; at t3 = t; will recover from the decay caused by the inhomogeneous
effects according to (15.94).

The same type of echo phenomenon occurs also for a three-level system where
we must assume that the static fluctuations of the f state are equal to x2 the fluc-
tuation of state e. This property can be satisfied for a weakly anharmonic oscillator
described by the Hamiltoanian

H = (hwo + 0)ata+ data'aa, (15.98)

where d is the energy anharmonicity and 9 is the static fluctuation. Additionally,
for this type of system we get the double quantum coherence contributions to the
full response function. These R3y pathways are convoluted with

2
Rf}ow)(ta, by, 1) = Rf}ow)(h, by t1) = Lun(ts + 26 + 1) = o= & (s t2ntn)?
(15.99)

However, for more complicated systems the echo effect becomes challenging to
observe. It still holds for individual Liouville space pathways, but when we have
many states in the e and f bands the delicate interference of phase rotations can
be masked after adding up all relevant Liouville space pathways.

15.2.6
Random Orientations of Molecules

The amplitude of an optical transition depends on the projection of the molecular
dipole moment onto the polarization vector of the excitation optical field. In multi-
state systems a single response function can include dipole moments of different
molecules that may have various orientations. It is clear that the projections will
depend on the orientation of the molecule in the laboratory frame of reference. It
is not easy to align molecules in solution, and unless we have some very special
experiment setup, we can expect them to be oriented isotropically in all directions.
Our task in this section is to average the molecular response over these orienta-
tions. It means that we cannot ignore the tensor character of the response function
any more. Actually, we can use it to our advantage as we do in Section 16.5

We have labeled the interaction order in the response functions in (15.2)—(15.5).
This interaction order now becomes important when the acting optical fields have
distinct electric field polarizations. Let us denote the polarization vectors of the
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incoming fields and the emitted field (in four-wave mixing) by e, e;, e3 and ey.
Let us also denote nq, n,, n3 and n4 the normalized orientations of the dipole mo-
ments in the third order response function of a single Liouville space pathway. For
a given arrangement of the excitation and detection polarizations, and for a giv-
en orientation of the molecular aggregate under consideration, the contribution of
the Liouville space pathway in FWM experiment will have in general the following
prefactor (nq - e1)(n, - €2)(n3 - €3)(n4 - €4). Let us denote averaging over the isotropic
distribution of orientations as {...)o. The averaged amplitude of the contribution
is thus

((n4 . 64)(113 . 63)(112 . 61)(111 . 61))0 . (15100)

Because orientations of the four dipole moments in the response can be in prin-
ciple all different, individual Liouville pathways will have different prefactors. As-
suming that molecular rotation due to Brownian motion in solution occurs on a
timescale much slower than the time scale of the nonlinear experiment, this type
of averaging can be treated independently of the time dependence of the response
functions.

The orientational average of dipoles can be calculated by applying Euler trans-
formation expressions. Let us take the molecular frame where the molecular tran-
sition dipoles are defined. The optical fields are defined in the laboratory frame.
We can denote the transformation operation from the molecular frame to the lab
frame as

dtd = Tgtmeh (15.101)

where the matrix T can be given in terms of three rotations. In matrix form we
have

cos () —sin(y) O\ [cos(f) 0 —sin(0)
T = | sin(y) cos(y) 0 0 1 0
0 0 1) \sin(6) O cos(6)
1 0 0
x |0 cos(¢) —sin(p)] , (15.102)

0 sin(¢) cos(¢)

where (v, 8, ¢) are the Euler rotation angles ranging in the intervals ¢ and y —
(0,2m), 6 — (0, 7). In terms of the vector components we can write

lab) 1
4l = 1,4 (15.103)

where summation over 4 = x, y, z is implied. For the product of transition dipoles
we then have

(14 - es)(n3 - e3)(ny - eq)(n1 - 1) = Z (e4)v,(€3)vs(€2) v, (1),

X (14) v, (13) 05 (2) v, (11) o, - (15.104)

I

@

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c15 — 2013/6/3 — page 341 — le-tex
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Now using (15.103) we can write the molecular dipoles in the lab frame

(ny-ea)(ns-es)(na-en)(ni-e) = Y D (ea),(€3)ns(E2)n,(E1),

V4v3VaV] Hap3
X Togua Tosus Tvguy Ty s (B4) g (13) 15 (12) 1, (B1) 0y -
(15.105)

Now the vectors e are defined in the lab frame, the molecular dipoles in the molec-
ular frame and T-s contain the transformation. The orientational averaging thus
amounts to the integration of the product T, Tvyu; Tvyu, Trypy over the whole
range of the Euler angles. This can be given in the matrix form [102]

((n4 - es)(n3 - €3)(n2 - €1)(n1 - €1))o = FOT(e) MU FW(m) (15.106)

where

FO(x) = | (x4-%2)(%3-%1) | » (15.107)

and
(4 1
M(“):% -1 4 1. (15.108)
-1 -1 4

For a given setup of the external fields and for the defined molecular dipoles, the
amplitudes of all Liouville space pathways for FWM setup can be orientationally
averaged using this procedure (15.77)—(15.78).

The same formalism applies to the linear response as well. In the linear response
we have the product of two transition amplitudes, one is the excitation, the other is
the detection in the form of

((n2- €)(n1-€1))o = FPT(e)MP FO(n) , (15.109)
where now
FA(x) = (x5 - x1) , (15.110)
and
@ _ 1
MO = 3 (15.111)

However, due to the trace property of the linear response function we usually have
the same transition involved in the absorption of the electromagnetic quantum and
in the emission into the same electric field. The amplitude that enters the linear
polarization thus becomes

1
HEX(n-e)(n-e)o = §|,ueg|2|E|2 . (15.112)
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The tensorial properties of the linear response function can thus be often ignored.
Special attention should be paid to the orientational averaging of three scalar
products of vectors

((n; . 63)(112 . 61)(111 . 61))0 = 3[63 . (62 X 61)][113 . (nz X 111)] . (15113)

This type of averaging would emerge is the second order spectroscopy (three-wave
mixing). First notice that for such products to be nonzero all laser fields must be
perpendicular, which yields a very weak response since the field-overlapping space
would be small. Second, if the system is a single dipole, the product of materi-
al transition dipole is always zero. Thus the second order response in the dipole
approximation is zero. However, going beyond dipole approximation, this prod-
uct survives and the second order response even in the second order to the field
could, in principle, be measured. It should be noted that the system must contain
inherent chirality in its structure for the response to be non vanishing as can be
inspected by performing space inversion operation of the system.

15.3
Application of the Response Functions to Simple FWM Experiments

15.3.1
Photon Echo Peakshift: Learning About System—Bath Interactions

Linear and nonlinear spectra provide us with information about both the electron-
ic properties of the studied molecules (positions of the absorption band) and the
properties of the molecular environment (lineshapes) as well as of the relaxation
dynamics. In a two-level system (a single molecule) the bath in most of the cas-
es is characterized by the single correlation function C(t) of the energy gap. The
so-called photon echo peakshift (PEPS) experiment is one from which energy gap
correlation function can be obtained. It enables us to gain insight into the effects
of bath reorganization that are otherwise very hard to attain with any other formu-
lation of the theory.

For the PEPS measurement, the third order nonlinear signal in the direction
ki = —ky 4+ k; + k, (photon echo) is measured with a slow detector. The delays
between pulses are denoted as T; = 7 and T, = T these are expected to be always
positive, 7 > 0 and T > 0. Thus, only the rephasing part of the response function
is therefore detected. The detector integrates the signal intensity over the time ¢.
Thus, we measure

(o)
Speps (T, 7) = /dt|s}j’(t, T, 7). (15.114)
0

This signal at a given time T rises from the initial finite value and then decays. In
the Spgps we look for the value 7*(T) of 7 for which the Spgps is maximal. This
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value is called the photon echo peakshift, as it is shifted from zero value, and can be
formally defined by the relation

d
57 Seeps (T, 7)le=e+(r) = 0, (15.115)

of course by assuming that there are no oscillations in the measured amplitude.
In the impulsive limit, the third order signal reads

ISP, T,7)? ~ I2,(t = 1)  Rsg(t, T, 7) + Rag(t, T,7)% (15.116)
where 12, () = e~ '’ is the inhomogeneity factor introduced in Section 15.2.5.
inh g ty

If we denote the line shape function by g(t) and, according to previous sections for
a two-level molecule, we can write:

|Rsg(t, T,7) + Rag(t, T, 7)|2 = e~ 2Rele0=8(D ) +slr+ T gir+n—g(r+T+)

x cos’[Im (g(T) + g(t) — g(T + 1))]
(15.117)

Because the signal is expected to decay fast with ¢t an expansion of the exponent
in t, up to the second order could yield a reasonable approximation. We will follow
derivation of Cho et al. [30, 31] to reveal striking insights into relation of the photon
echo peakshift and the energy gap correlation function. To this end we expand the
g(t) function as g(a + t) ~ g(a) + g(a)t + g(a)t?/2, where the dot denotes a time
derivative. Since

o0
h
Reé(t)=/dwc”(w)coth( - )coswt, (15.118)
2k T
0

where C”(w) is the spectral density and

Img(t) = /dw#(cos wt—1), (15.119)
0

the cosine part of (15.117) can be expressed in the second cumulant expansion as
cos?[Im (g(T) + g(t) — g(T + t))] ~ exp[—(Im g(T))?t], and the exponent of the
exponential part could also be expanded to the second order in t. Equation (15.114)
thus becomes

o0
Speps(T, 7) ~ / dteBT—ATE=2P@) =ML (15.120)
0
where
A(T,7) = A}, + (Im g(T))* + Re {§(0) — §(T) — &z + T)} , (15.121)
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B(T,7) = 2A% 7 — 2Re {g(T) — g(t + T)} . (15.122)
The integration of (15.120) gives

Speps (7, T)

2
exp [—ZRe g(t) — ALt* + B(T—T)]

2 \/— 4A(T, )

x [1 + erf(L’T)ﬂ . (15.123)
2 JA(T, 7)

Equation (15.123) represents an approximate result for the photon echo signal and
can be used for calculating the photon echo peakshift.

If the inhomogeneous broadening is much larger than the homogeneous broad-
ening, that is Re §(0) < A? the integrated photon echo is approximately given by
Seeps (T, 7) &~ exp{—2Re g(7)} for 7 > A '. This can be verified by noticing that in
this limit B ~ 2A% 7 and A ~ A?, and the error function erf(x) ~ 1 for x > 1.
The integrated photon echo signal does not depend on T here, and the time depen-
dent photon echo signal has its maximum at time t = 7. The peakshift is given by
the condition Re §(7)|;=.+(1) = 0 which leads to t*(T) = 0at 7 > A}’

If the inhomogeneous and homogeneous line widths A% and Re §(0) are com-
parable, one can apply another expansion of the signal, this time in 7. We expand
all quantities in the second order of 7 which leads to B ~ 2(A% + Re (1)),
A~ Re §(0) + Ay, + (Im g(T))%, Re g(r) ~ §(0)72/2, and then expand (15.123) to
the second order in 7. Taking the derivative of such an expanded integrated signal
Speps according to 7, and solving the resulting linear equation for 7, lead to the
following expression for the peakshift

1 (A% +Red(T)) J§(0) + A2 + (Img(T))?
VT E0) [8(0) + 2A% + (Im g(T))2] + A (Im g(T))?

T) = (15.124)
In the case that the inhomogeneous broadening can be completely ignored (for
example, in liquids), the peakshift expression simplifies dramatically to

1 Re g( T)

*T) = — . 15.125
= E T+ (Im &(T))? (112

Often Im g(T) is small compared to g(0) and can be neglected, and the peak-
shift therefore directly reveals the real part of the energy gap correlation function
Re g(t) = Re C(t). The long T time peakshift is correspondingly equal to zero,
(T — o0) = 0.

Most interestingly, in the limit of long population times T — oo in (15.124), that
is, for A2 comparable to §(0), the long time peakshift remains nonzero. We have
Img(T — o0) ~ 4, Re (T — o0) ~ 0 and thus

1 AL JB(0) + AZ 4+ A2
*(T = — . 15.126
T o) = 00 + 28L 1 2 1 AL (15126
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=
-
& “&“’Dm,
N t\:q\‘:rq-%‘
(I8 10 = 1 10 10°
Population time [fs]
Figure 15.7 Peakshift measured on a chro- tures (from light gray via dark gray to black),
mophore captured by a mouse antibody at demonstrating how its structure becomes
different level of antibody development [103]. more specific for binding the chromophore.
The disorder in the environment of the chro- (Figure taken from [103]; © 2006, National

mophore as revealed by the long time value of ~ Academy of Sciences, USA.)
the peakshift decreases as the antibody ma-

Consequently, the nonzero long time value of the peakshift is the evidence of a
finite inhomogeneity.

An interesting example of the peakshift application is presented in Figure 15.7.
In a study reported in [103] a chromophore molecule (fluorescein) was injected
into a mouse, and the evolution of the photon echo peakshift of the chromophore
bound by the antibody was monitored as the antibody matured. Over time, the
antibody becomes more specifically designed for binding of the chromophore. One
can imagine the antibodies having their protein “trap” designed more specifically
to the chromophore molecule, rather than using some generic design. This results
in a decrease of the heterogeneity of the environment of the chromophore as it gets
trapped by more antibodies specifically tailored to it.

According to (15.124) and (15.125), the peakshift can be used to estimate the
bath correlation function, that is, it can be used to investigate fluctuations of the
energy gap. If a complex of two or more molecules is measured, several molecules
may contribute to a single electronic transition and the total energy gap correla-
tion function is built from contributions of individual molecules. For the case of
two identical molecules with energy gap fluctuations uncorrelated with each other,
a certain combination of one color peakshifts (measured with all three pulses of
the same frequency) and two-color peakshifts (measured with the first two pulses
of one frequency and the third pulse of another frequency) allows ones to esti-
mate the excitonic mixing and thus the value of excitonic coupling between the
two molecules. For two different molecules, one can even estimate the difference
between the correlation functions on the two molecules.

Simulation of such an experimental determination of the coupling coefficient
and the difference between the monomeric energy gap correlation functions in a
heterodimer has been done in [104]. Figure 15.8 represents a comparison of the
coupling coefficient and the difference of the energy gap correlation functions on
the two molecules forming a dimer calculated from the photon echo peakshift,
with the actual values that had entered the simulation. The overall good agreement
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between the calculated and expected values for the waiting time T demonstrates
that despite the many approximations in the derivation of the peakshift expres-
sion, (15.126), it enables us to retrieve a quantitative information about molecular
system interaction with its environment.

15.3.2
Revisiting Pump-Probe

We have described the pump probe experiment in Section 13.3.2 where we intro-
duced it in terms of the induced polarization. Here we relate it explicitly with the
response function formalism.

The pump probe technique for the three-band systems can be understood as the
preparation of the excited population, or more precisely — the nonequilibrium state
by the pump pulse, propagation with some delay, and then probing of the resultant
non equilibrium density matrix by the probe pulse. In the FWM setup according to
previous sections, the populations p,. are prepared by the first two k; and k, pulses
in the rephasing and nonrephasing signals by interaction configurations ki — k,
and —k; + k;. Let the k; = k; = kpy. In this case the pump probe intensity will
be detected in the probe direction —k; 4+ k; + k3 = kpy and k1 — ky + k3 = ky,
when k3 = k. The pump probe signal can thus be represented by the sum of the
rephasing and nonrephasing signals with the six Feynman diagrams as shown in
Figure 15.9.

Following Section 15.1.3 we can thus write the induced polarization by taking
T) = 0and T, = T as the delay time between the pump and the probe

o0
P1(33P)(t7 T) ~ e 12! // dtsdt,dty [SR(tL ty, t1) AR + Sxr(ts, t2, tl)ANR] ,
0

”‘l; T T T 3 T T T T G T T T T
L]

P . ;E -1F
= an
3
i 4] q 4 -2}
5 03 "':\‘— El )
Z :
5 L B -3
S \\‘__ =
= .2 =
R 1 |
° oa— i =l

00 L 1 1 pla L L L. ] slaa I Lol

0 100 200 3 A0 0100 200 300 400 500 O 100 200 300 400 500

(a) T[] (b) T [fs] {c) T [fs]
Figure 15.8 (a) Simulated peakshift measure-  shift by the formula from [104]. (b,c) The dif-
ment of the excitonic coupling coefficient. ference b(t) = Ca(t) — Cg(t) of the two
Four different values of the mixing coeffi- molecules A and B of the dimer reconstructed
cient were used to simulate two-color and from the simulated peakshift, and compared
one-color peakshift measured with differ- with the actual value. (Figure adapted from
ent pulse length, and the mixing coefficient [104]; Copyright © 2004, American Institute of
was then calculated from the simulated peak- ~ Physics.)
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where
Agp = eiQ(t;—tl)S;u(t + T —t3—t)—t1)Epu(t + T — t3 — ) Ep(t — t3) ,

A =e0BTNE (t+ T —t3—t, — 1) Epult + T — t3 — 1) Epe(t — 1) -

according to Section 13.3.2 the self-heterodyning leads to the following expression
of the pump probe intensity

Ipp(T) = /dtpl‘j,’(t, T)ER(E) - (15.127)

It is convenient to use the impulsive limit, as ¢, is usually much larger than ¢; or
t3. This is because T is the physical delay between pulses, while the pulse duration
controls #;, t3 and ¢. For this purpose we can choose t, = T, t; = 0, ;3 = .
Altthough we use ultra-short pulse, we can assume the frequency resolution of
the pump pulse to be sufficient to create a specific excitation in the e band (see
the discussion of the physical delta-function in Section 15.1.4). We can therefore
choose a specific initial state in the time-evolution operator for T propagation. The
detected amplitude at a specific frequency is determined by the frequency variable
conjugate with t; delay. The frequency-resolved pump probe spectrum is thus given
by the Fourier transform of the response functions:

Ipp(wpr, T) I SR(wph T, tl = 0) + SNR(wpr, T, tl = 0) .

We can also assume the so-called two-dimensional pump probe spectrum where
the specific excitation frequency is associated with the specific emission frequency.
We then have

Ipp(wpr, T, a)pu) I SR(G)3, T, —a)pu) —+ SNR(C()3, T, wpu) .

The “minus” sign of w, in the rephasing term denotes the specific phase rotation
of the time-evolution in the rephasing response function.

Figure 15.9 Double sided Feynman diagrams ~ pump probe experiments by performing Fouri-
corresponding to the pump probe experiment.  er transforms with respect to ¢; and t3 and
The g, e, f denote the bands where the exci- taking t; = T, = 1p as the delay between
tation propagates. The delay times t1,t,,t3 of ~ pump and probe.

the response function are associated with the
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15.3.3
Time-Resolved Fluorescence

We will briefly describe one more “theoretical” experiment here based on the re-
sponse function expressions. Consider the experiment where an optical pulse ex-
cites the system which is then left to propagate on its own. As it propagates it has
the probability to perform a spontaneous emission of the field as in fluorescence.
If we were able to record the emission at a given delay time 7 after the excitation,
we could imagine the time-resolved fluorescence (TRF) experiment.

A theoretical description of the TRF can be based on the third order response
function theory and involves the system relaxation dynamics due to the coupling
with the bath. For the TRF calculations we proceed along the same ideas as for
the pump probe, but we can make few more restrictions. Again, the first two inter-
actions are performed with the excitation pulse, which resonantly excites a single
exciton state e and creates its population. Time t; is thus limited within the exci-
tation pulse and Z(t,) is responsible for the preparation process. The second delay
between the interactions t; is a waiting time when the field is off. During the third
time t; the emission takes place by a transition from some exciton state ¢’ to the
ground state, and the dynamics of the corresponding e’g optical quantum coher-
ence generates the outgoing field, which is detected by a detector. Within these
restrictions only two terms in the response function are related to the TRF [26]:

Rrrr(ts, 1, t1) = i3 [Tﬂﬁ |U(Eg)(t3)V(gg“)Z/l(“)(tz)V(e“g)Z/{(Eg)(tl)V(Eg“Hpgg)
+ Tr(@ |L{(Bg)(t;)V(Bg“)L{(“)(tz)V(“gB)L{(gB)(tl)V(geee”pgg)] .
(15.128)
They are represented by a single Feynman diagram in Figure 15.10: the two terms
are obtained by interchanging the order of first two interactions. We next assume

the impulsive limit for the excitation and full frequency resolution for detection,
and we denote the free-field propagation time as tp = ;. The TRF is then given as

o0
F(o,Tp) = Re /dre““”iRTRp(t;,rD,tl —0). (15.129)
0

Since we have assumed that during the excitation only one excited state population
is resonantly excited (that can be achieved when the incoming field frequency is
tuned to a specific inter-band energy gap in the system), we set

V(Beeg)u(eg)(O)V(egw)|pgg) = V(eege)u(ge)(o)y(gm)|pgg) ~ —

p‘;i’) . (15.130)

where |p!¥)) denotes the excited state e population with the bath equilibrium corre-
sponding to the ground state. The final expression for the TRF kernel is

Ryrr(ts, Tp) = —i*tr (@ U8 (t3) V(8«1 9) (1)

p‘;‘i’> (15.131)
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l9){gl
|a)|ts|{g]
a b
)], [@
]|l
lg)|t1| (el
l9) (9] Figure 15.10 Double sided Feynman diagram corresponding to the time-resolved

fluorescence.

(we skipped t; = 0).

This type of response function contribution to the TRF (15.131) is illustrated by
the Feynman diagram presented in Figure 15.10. The system starts in its ground
state population |g)(g|. After two successive interactions (both happen within the
single laser excitation pulse) the excited state population |e)(e| is created. The sys-
tem then evolves in the excited state during the waiting time ¢ (population transfer
and population to coherence transfer events are possible), leaving the system in an-
other state configuration |a)(b|. Time 7 separates two interactions after which the
system returns to the ground state |g)(g|. The evolution during this last interval
determines the emission spectrum, which is obtained by the Fourier transform.

The calculation of the fluorescence dynamics requires that the propagator of the
full density matrix be calculated, so all information about the system and the bath is
fully determined. This is easily accomplished for a single two-level system coupled
with the bath using the cumulant expansion, which gives

RTRF(t37 ‘[D) ~ i3 exp(—ia)ggt3)

x exp (—g*(ts) + 2iIm[g(rp) — g(Tp + 13)]) - (15.132)

For more complicated systems the propagators can be calculated using methods of
the dissipation theory and the TRF can be calculated.
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16
Coherent Two-Dimensional Spectroscopy

Two-dimensional coherent spectroscopy which will be introduced in this chapter is
a relatively new addition to the family of nonlinear optical spectroscopies. It uses
the full potential of the photo-induced third order nonlinear response, because it
aims at a full resolution of the response. In Section 13.3.3 we have shown that with
the heterodyne detection scheme, it is possible to detect the electric field of the
signal itself, rather than just its intensity, and it is even possible to phase that field
so that we can identify its in-phase and out-of-phase component. This was possible
by comparing the heterodyne detected field with the results of for instance pump
probe spectrum, a method which is in a certain sense a more simple scheme for
generation of the similar signal. Comparison with the pump probe allows us to
interpret the signal, or more precisely, the response, in terms of absorptive and
refractive parts. In the following sections we will show how this interpretation is
related to the structure of the third order response derived in Section 13.1.

16.1
Two-Dimensional Representation of the Response Functions

Let us start by comparing a general structure of the first order and the third order
responses. We compare the first order response function of (13.20) which we now
write as:

J(t) = iTr {89 7 c888) (1) W(gg)} e iRt (16.1)

with 7(€88)(t) = 14(8) (t)V(€88), and some representative third order response func-
tion, for example, R,, of (15.14), which can be written as:

Rag(ts, ta, t1) = —iTr {218 718 (15)1(<9) (1)
x fu°8) 7 (6ee8) (1) W (e8)} eTi2(—h) (16.2)

In (16.2) we can recognize a repeating pattern consisting of the superoperator 7
and the transition dipole operator, which also appears in (16.1). The comparison
of (16.1) and (16.2) suggests an analogy between the absorption spectrum given by
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16 Coherent Two-Dimensional Spectroscopy

the Fourier transform of the response function J(t) and a possible nonlinear spec-
trum given by Fourier transforms along the times t; and t;. In this analogy the
frequency w; dependence obtained by the Fourier transform of the third order re-
sponse in time t; would be the same as the frequency dependence of an absorption
spectrum:

(o) (o)
/dtlei‘”l“/dt;ei“’”3R2g(t3,t2,t1) ~ W(w3) U (1) D(w1) . (16.3)
0 0

Because of the phase factor /"1 the inverse Fourier transform is sometimes used
to obtain absorption that peaks at positive frequencies, w; > 0. However, the sign
of frequency is a feature of mutual agreement. We choose to take the negative fre-
quency sign for the rephasing and the positive frequency for the nonrephasing sig-
nal. We thus always use the same type of the Fourier transforms for both t; — w;
and t; — w3. The frequency w; dependence obtained by the Fourier transform in
time t3 would be the same as that one of the “absorption” of a system out of equilib-
rium, whose statistical operator is W (¢9), In this particular case, W (¢9 corresponds
to the system in the excited state, and thus the nonequilibrium “absorption” in fact
also includes the stimulated emission.

The D(w) function in (16.3) is sometimes denoted as the doorway function and
W(ws) is the window function [91] and this representation of the response func-
tion is sometimes denoted as the doorway-window representation. As described in
the previous paragraph the doorway function reflects the absorption spectrum. The
window function of the full rephasing or nonrephasing response function consists
of several terms. One part of the term reflects the change of ground state popula-
tion, what is denoted as the ground state bleach. The other part describes the light
emission from the excited state: this is the excited state emission or the stimulated
emission. The last part corresponds to the absorption of quantum that takes the sin-
gle excited state into the double excited state. This is usually denoted as the excited
state absorption or the induced absorption.

The evolution superoperator /(%) (t,) resides between the two generalized door-
way and window spectra in (16.3). The two-dimensional Fourier transformed spec-
trum, therefore, evolves with the delay t,. From Section 15.1.3 we know that we can
record the full time dependence of the third order response in 1, and #, using a
specific pulse setup. Formally, we can construct two-dimensional plots correlating
the absorption in w; and the nonequilibrium absorption-emission spectra in ws.
The t, evolution of the spectra may involve various relaxation phenomena: features
that reveal relaxation of energy among several excited states, or coherence between
given pairs of levels. From Section 15.1.4 we know that for t; > 0, that is, when
the pulse k; preceded the pulse k,, only the rephasing pathways contribute to the
signal in the direction —k; + k, + k3 (here we neglect pulse overlap effects). Thus
the we can define the rephasing 2D spectrum as

oo o0
SR(C()3, ty, a)l) = /dt; / dtl 51(23)(t3’ ty, tl)eiwsls—i_iwltl . (164)
0 0
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16.1 Two-Dimensional Representation of the Response Functions

At the same time, we can also define the nonrephasing 2D spectrum and construct
a similar quantity as

Snr(ws, By, w1) =

0\8

oo
dt;/dtl a(ts, ta, )eleosttiont (16.5)
0

The limits of the integration are set naturally, because for t; < 0 and t; < 0 the re-
sponse is zero. The quantities defined in (16.4) and (16.5) can be directly measured
experimentally. The heterodyne detection scheme of Section 13.3.3 enables us to
measure the third order signal electric field, directly proportional in the impulsive
limit to S©)

Notice that if the explicit pulse ordering is imposed in Section 15.1.3 in the im-
pulsive limit (Section 15.1.4) the rephasing signal is associated with the wavavector
configuration k; = —ki + ky + ks, the nonrephasing is then related to k;; =
+k1 — k3 + k3. The rephasing and nonrephasing signals are thus associated with
the linearly independent wavevector configurations. We can thus also write

SR(w3,t2,w1) = Skl(w3,t2,a)1) (166)

SNR(G)3,t2,C()1) = Sk“(a)3,t2,a)1) . (167)

As described in Section 15.3.2 the pump probe signal is given by the rephasing
and nonrephasing parts. We thus can define the sum

Skl(a)3, tz, —Cl)l) + Sk“((j)j;, tz, 6!)1) = Spp((j)j;, tz, 6()1) (168)

as the two-dimensional pump probe signal. Alternatively, this sum is referred to as
the total signal; however, we prefer the pump probe since it does not include the
double quantum coherence signal, and in this sense it is not “total”.

There is a third part to the response — the double quantum coherence — that
comes from ky; = k; + k; — k3 configuration. We can thus define the two-
dimensional spectrum associated with that direction. Let us inspect the charac-
teristic time evolutions of the corresponding response function. It has two contri-
butions given by (15.19) and (15.20). The time evolution is implied by factor

exp(—i_Q(tl + 2t + t3)) , (16.9)

where Q is the fundamental resonance - the inter-band gap. One quantity of inter-
est is thus the #, interval since it oscillates with double frequency and, therefore,
shows resonances of double excitations. The second interval can be chosen to be t;
or t,. Two representations of the two-dimensional double quantum coherence spectrum
can be suggested

Sk“l(t3,t2,t1) —> Skm(t3,a)2,(j)1) (1610)
and

Sk“l(t3,t2,t1) —> Skm(a)3,a)2,t1) . (1611)
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16 Coherent Two-Dimensional Spectroscopy

The representation Sy, (3, w2, w1) can be advantageous since it correlates the ab-
sorption resonances along w; with double-resonances along w,. So it can indirectly
resolve the double exciton wavefunction mapping onto the single excitons [105].

Let us go back to the rephasing signal. The actual relation between absorption
spectra and the 2D spectra defined above can be found by considering a simple case
of a two-level system. For long population times t, the dependence of g(t) function
on t; becomes linear (see Appendix A.8). Both contributing rephasing response
functions then have a form

Rag(ts, t2, 1) = Rag(ts, ta, 1) ~ e 8RI—g7()=i@(—0) (16.12)
The Fourier transform, (16.4) leads to
Sk (w3, b, w1) = G(ws — 2)G* (w1 — Q) (16.13)

where we defined
o0
G(w) = /dte_g(”_i‘”t. (16.14)
0

The function G is related to the susceptibility ¥ and determines the absorption
spectrum k,(w) ~ Re G(w — ) (see (14.19)). To simplify (16.14) we can use the
homogenous limit form of the energy gap function g(t) = I't with some real
dephasing rate I" [26] and we obtain:

r w

G(w) ~ Tt o +iF2~|—a)2 .

(16.15)

The first term on the right hand side corresponds to the Lorenzian absorption spec-
trum, while in the second term we meet a dispersive lineshape corresponding to
the refraction index. We can see that the rephasing 2D spectrum is not strictly
proportional to the absorption spectrum, but it is a mixture of the absorptive and
dispersive contributions.

Let us now study the simple profile of a peak in the 2D spectrum that can be ob-
tained analytically for an arbitrary multilevel adiabatic model. The 2D signals are
given as sums over Liouville space pathways, hence, each pathway can be trans-
formed accordingly:

S(ws, 2, 1) = Y Sp(w3, b, 1) . (16.16)
These have the following form

Su(ws, ty, w1) = A(n)/ dtydtzelostsTionh

X exp(—iests —iexty Eiertr)m) , (16.17)
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16.1 Two-Dimensional Representation of the Response Functions

where the subscript n denotes different terms of the summation. Ay is a com-
plex prefactor, given by the transition dipoles and excitation fields, while the ex-
ponent on the second row is the propagator of the density matrix. Here &; co-
incides with the energy gap w; between the leff and right states of the system
density matrix relevant to the time interval t;. Stimulated emission and ground
state bleach carry “+” sign, while induced absorption has “—” overall sign. The
Fourier transforms in (16.17) map the contributions to the frequency-frequency
plot (t1,t3) — (w1, w3) ~ (Fle1|, €3) (the upper sign is for kj, the lower for kyj).
Diagonal peaks at w; = Fw; are usually distinguished, while the anti-diagonal
line is defined as Fw; + w3 = const. The whole 2D spectrum becomes a function
of t,: either oscillatory for density matrix coherences |a)(b| with the characteristic
oscillation energy €, = w,), # 0, or static for populations |a)(a| (g, = 0).

Equation (16.17) can be analytically integrated by adding phenomenological de-
phasing exp(—ie;t; — y;t;). For a single contribution §, giving rise to a peak at
(w1, w3) = (Flei], €3) we shift the origin of (w1, w3) plot to the peak center by
introducing the displacements (w; + &1 = —s;1, w3 — €3 = s3 for the rephasing
pathways, while w1 —&; = 51, w3—é3 = s3 for the nonrephasing). For y ~ y; &~ y3
we get the peak profile

Su(s3, 12, 51) = A, L(s1, s3)e” "2 cos(|ez |tz + ¢ (51, 53)) (16.18)

where the lineshape and phase for the k; (upper sign) and kj; (lower sign) signals
are

VY2 £ sis32 + y2(s3 F 51)?

L(s1,5s3) = T+ (2 + 1) , (16.19)
@(s1, 53) = sgn(e,) arctan (%) . (16.20)

The phase ¢ and the full profile for A, = 1 and t, = 0 are shown in Fig-
ure 16.1. The rephasing and nonrephasing configurations are obtained by flipping

Sn(SSa ta = 0’ 51)
T T '\._l'.l T =
AN |

(@) s1/7 (b) s1/7
Figure 16.1 Phase ¢ of the contribution (16.18)(a) and peak profile S, (b) as a function of the
shift from the peak center (s; = s3 = 0) using relative coordinates. The diagonal lines of the k;

and ky; contributions to the 2D spectra are shown by dashed lines.
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16 Coherent Two-Dimensional Spectroscopy

the direction of the s; axis. At the center of the peak (s; = s3 = 0), we have
and ¢ = 0, leading to S, o cos(|ez|t2). However, for (s; # 0,53 # 0) we find
Sy o< cos(|ez|ta + ¢(s1, s3)) with nonzero phase ¢ (s1, s3) # 0. Note that the sign
of the phase ¢ is opposite for the peaks above (¢, < 0) and below (g, > 0) the
diagonal line, and this applies to all contributions.

The whole two dimensional spectrum is a sum of all relevant contributions. As-
suming that all dephasings are similar, different contributions to the same peak
will have the same spectral shape and they may be summed. We can then simplify
the two dimensional spectrum by writing the signal as a sum of peaks Y, which
have static (from populations) and oscillatory (from coherences) parts:

S(ws, by, wq) = e_}/ZLZZiJ.Lij(wlr w3)

x [AI;_;' + A% -COS(Iwultz+¢ij(w1,w3))] : (16.21)

Here w;; is the characteristic oscillatory frequency of a peak (ij), A" j(t2) and
A (t) are the real parts of orientationally-averaged prefactors. The spectral line-
shape is given by L; (w1, w3).

We can thus quantify the system’s fine structure of the excited states, as well
as coherent dynamics using the two dimensional spectrum and by carefully in-
specting the spectral lineshapes. We apply these ideas below while studying simple
model systems.

Interpretation of many types of two dimensional spectra can be based on this
simple shape. In the sections that follow, more involved spectral shapes that take
into account the sometimes complicated evolution of the line broadening func-
tion g(t) and the excitation transfer dynamics will be studied. Let us notice in
short some of the most important features of the homogenous lineshape. First,
the rephasing and nonrephasing spectra have certain characteristic orientations
(Figure 16.2), and both their real and imaginary parts contain positive and negative
contributions. These features survive even in spectra of more complicated systems.
The contribution of the R, pathway, (16.2), which contains evolution in the excited
state during the waiting time ¢, could be readily interpreted as a stimulated emis-
sion (SE). Combined with the corresponding nonrephasing pathway, they would
lead to a decrease in absorption if they were measured in a pump probe (k; = k;)
configuration. This is also a somewhat general feature, because the real part of the
total spectrum should represent absorption. On the other hand, we can see that
this interpretation is only approximatively valid. It will later be seen that even for a
real part of a two-level system (which excludes any absorption to the higher excited
states) the 2D spectrum is not purely positive. The R3; pathway contains propa-
gation in the ground state and it has the same sign as R,. It cannot, therefore,
represent absorption. Rather, it has to stand for the ground state bleaching (GSB),
that is the loss of absorption due to the decreased population of the ground state.
The nonrephasing counterpart of this signal can be classified in the very same way.
For higher lying excited states, one more pathway with a negative sign contain-
ing propagation in the excited state during the waiting time ¢, contributes to both
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16.1 Two-Dimensional Representation of the Response Functions

Re Sk[ Im Skz

W3 — Weg

W3 — Weg

W3 — Weg

-2 0 2r -2Fl 0 l 2
(a) |wi]— weg |wi]— weg (b) |wil— weg |wi] — weg

Figure 16.2 Basic homogeneous and inhomogeneous lineshapes of the 2D spectroscopy. (a)
The homogeneous system. (b) The inhomogeneously broadened system.

the rephasing and nonrephasing signal. Their combined negative signal is the one
corresponding to the so-called excited state absorption (ESA).

So far, we have considered all molecules in the sample to be identical. Now, let
us introduce inhomogeneity in the form of diagonal (energy) disorder. We will see
that with respect to disorder there is more to the 2D spectrum than just a product of
absorption spectra. The response function formalism can handle a simple disorder
by including it into the line shape function g(t) as we have seen in Section 15.2.5.
The product doorway-window expression of the 2D spectrum, (16.3), is no longer
valid because the response

Rog(ts, ta, t1) = Rag(ts, b, 1) & e—g(is)—g*(11)—A(13—11)2—i9(is—tl) , (16.22)

cannot be split into a product of ¢3 and t; dependent functions. The double Fourier
transform analytically leads to Erf functions. The result of the analytical calcula-
tion is depicted in Figure 16.2 as well. This 2D lineshape has to correspond to a
sum of the contributions of individual molecules of the ensemble, because the 2D
spectra of noninteracting sub-ensembles is additive. The inhomogeneity can thus
be represented as an averaging over 2D spectra of species with different transition
frequencies 2. Because all such spectra differ only by their position at the diago-
nal of the spectrum, the lineshape has to be elongated as is shown in Figure 16.2.
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16 Coherent Two-Dimensional Spectroscopy

Two-dimensional spectra, therefore, broaden only along the diagonal, and both the
homogeneous and the inhomogeneous line widths can be in principle estimated
from a measurement on the disordered system.

As we will show later, the 2D spectrum not only directly reveals the homogeneous
and inhomogeneous line shapes it can additionally allow us to estimate the reso-
nance coupling by the presence of the crosspeaks, and it enables an observation of
energy relaxation processes between electronic levels by build-up of the crosspeaks
in time ;.

16.2
Molecular System with Few Excited States

We have already introduced basics of two-dimensional lineshapes in the previous
section. Now we will add even more details, and we will concentrate on properties
of systems with more than two levels, including their time evolution.

16.2.1
Two-State System

In this part we briefly consider an ideal quantum system of two energy levels: the
ground state |g) and the excited state |e). This model effectively represents an isolat-
ed resonant transition of, for example, an atom. Since there is always some spectral
line broadening phenomenon involved, we add phenomenological decay of inter-
band coherences. The total Hamiltonian in the system eigenstate basis consists of
the material part and the coupling with the electric field

H = e,lg)(g] + e.le) (el — RE(t) .

As usual we set the energy of the ground state &, = 0 and the linear response
function (13.18) together with p., = |g)(g| results in

2 _ .
SU(t) = =20 (t)|gel"e™" sin (0 gt) -

The Fourier-transformed linear response function is

S (01) = + [ g L ! (1623)
VTR [y o1 —0g)  y Hi(e1r o) ] ‘

This function defines the optical susceptibility and thus the absorption spectrum.
For an isolated two-level system it is a Lorentzian-shaped function, centered at w.,
with the linewidth y .

In a third order photon echo response function of a two-level system we have
only two contributions, ground state bleaching and stimulated emission which, for
the rephasing part, is

SOB(t3, 1y, 1) = Ra(ts, tp, 1) = pieleli—HImv(ith)
R3

SSE(ts, 1y, 1) = Ra(ts, ty, 1) = piel@eli=t)=r(hth) (16.24)
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16.2 Molecular System with Few Excited States

— it

Weg + AV

kT

7 f Figure 16.3 Model system of displaced harmonic oscillators.

while Ry (3, £y, t1) and R4(t3, 1y, 1) contributions are zero. Thus, the corresponding
response function is

3
i
SOt by, 1) = (g) 6 (t1)0 (£2) 0 (t3)u*[Ra(t3, ta, 1) + Rs(ts, ta, 1))
3
=2 (%) 0(£1)0 (1) 0 (t3)u e e 1=y () (16.25)

The difference in the nonrephasing response function is just the sign in front of
iwgt1. By applying the Fourier transform we then obtain the rephasing and non
rephasing two dimensional spectra as follows:

s , ,(1 > 1 1
w3, ), W = - N . - ’
(@3, t2, 1) a ) H Y U@y — 0y 7 — @1+ g
PN
Sei(@s, o) =2(~) u* ! : ! (16.26)
kit 3,12, W1 A V_i(U)}_weg) V_i(wl_weg). .

From these analytical expressions we observe that the nonrephasing 2D spectra of
the real and imaginary parts are just mirrored images of the rephasing spectra with
respect to w; axis. This is a consequence of the simple damping model as described
in the previous section.

16.2.2
Damped Vibronic System — Two-Level Molecule

Let us now consider the system of Section 8.6. We repeat the energy level dia-
gram of the system in Figure 16.3. In one dimension the electronic potential of
the ground state is V,(q) = mwoq?/2 and the displaced electronic excited state is
described by the potential V,(q) = w ., + mwo(q— d)*/2. Here wy is the vibrational
frequency, ., is the energy gap between the minima of two potentials and d is a
displacement parameter.

Vibrational dynamics in the harmonic potentials results in an infinite set of wave-
functions v, with quantum numbers m = 1,..., 00 and corresponding energies
E, = ho(m + 1/2) with respect to the bottom of the corresponding potential sur-
face. Transitions between the ladder of the electronic ground state and the one of
the electronic excited state determine the vibronic progression in the absorption
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16 Coherent Two-Dimensional Spectroscopy

spectrum. The intensity of each vibronic peak is scaled by the overlap of vibrational
wavefunctions in the ground and excited state potentials. Following these assump-
tions the absorption spectrum of this Franck-Condon molecule can be given by

o0

o0
__nwg L IR
K (0) o Z e kBT|an|2Re/dtel(w wegt—iwo(n—m)t—yt (16.27)
m,n=1 0

where the line-broadening parameter y is introduced and F,,, is the Franck-
Condon wavefunction overlap integral for the m — n transition [98]. It is the matrix
element of the displacement operator:

Fpun = (m|D(d)|n) . (16.28)

Here D = exp(—1/2d?* + d(a' — &)) which is here given in terms of bosonic (vibra-
tional) creation @' and annihilation & operators, d? is due to normalization.

The above description considers the electronic+vibrational system as a closed
system. However, the line-broadening parameter y includes the dephasing phe-
nomenologically without a more detailed physical insight. A more general model
of a realistic molecule is needed to capture both the vibrational-type ladder of the
energy spectrum and the spectral broadening. The cumulant expansion technique
allows us to describe various types of vibrational baths and includes these effects
explicitly.

As described in Section 8.6 the nuclear dynamics of such a system can be de-
scribed by various forms of spectral density. Fast-decaying modes of molecular vi-
brations will result in homogeneous broadening and strong coupling to the high-
frequency vibrations will result in vibrational progression in the absorption. By
taking various limits with respect to vibrational frequency, vibrational damping,
different damping regimes can be achieved representing different baths. The cases
of undamped, damped, and overdamped regimes are discussed in the following.

The spectral line shape function g(t) describes the spectral lineshapes. Following
Section 8.6 the overdamped semi-classical bath is described by the spectral density

YA

c” ,
w?2 + ),2

osc(®) =24 (16.29)

and in the high-temperature limit we get the corresponding lineshape function

go-sc(t) = i (i _1) (e—yt + ]/t — 1) . (1630)
y \By

Another form of the overdamped bath is given by the quantum-overdamped model
of the density

cr 4oy’ 16.31
w) = ——— . .
O_q( ) (6()2 + ,yZ)Z ( )
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16.2 Molecular System with Few Excited States

In the high-temperature limit the corresponding lineshape function is somewhat
more complicated [106]

22
Goq(t) = 5,2 (e'yt+3e " +2yt—3)

A
—i— (e yt 427" +yt—2) (16.32)
v

The damped regime where the spectral density still maintains a resonance will be
described by the spectral density

4howwly

Cé/(a)) _ (16.33)

(@2 = wf)’ + 7202

however, the spectral lineshape should be calculated numerically.

Let us first consider the overdamped vibrational modes. Comparison of the quan-
tum and semiclassical models of the overdamped bath is presented in Figure 16.4.
The spectral densities are similar but the quantum model has sharper cutoff at
high frequencies. The real parts of the lineshape functions g(t) (Figure 16.4b) de-
termine the absorption linewidth. The corresponding absorption spectra are pre-
sented in Figure 16.4c and have only minor differences in their absorption line-
shapes. The distortions in the lineshapes are mainly determined by the real part
of the corresponding lineshape function. For the semi-classical bath, it is smaller by
AJy compared to the quantum bath at yt > 1. The slopes of the imaginary parts
are, however, both equal at yt > 1.

The lineshape functions of the overdamped system correspond to fast,
24k Ty =2 > 1, or slow, 2Akg Ty % < 1, decay regimes. In the former case
we get the Lorentzian absorption lineshape and in the latter case the Gaussian.
The same form of the lineshapes is obtained in the 2D spectrum as well; however,

C"(w)/A

—
QO
~

Re[g(t)]/A

I 1
.0 1.0 20 3.0 4.0 5.0 —67 —4y —27 0 2y 4~y 67y
W — Weg

A
o
)
2
3
—
o
Ka)

Figure 16.4 (a) Quantum (dashed line) and semi-classical (solid line) spectral density functions
of an overdamped two-level system and corresponding (b) real parts of the lineshape functions
and (c) absorption spectra.
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16 Coherent Two-Dimensional Spectroscopy

modes of slow decay of phonon bath fluctuations reflect to the inhomogeneous
lineshape broadening rather than homogeneous [106].

Let us now relax the requirement of the overdamped regime and consider the
damped vs. undamped vibrations. The spectral densities shown in Figure 16.5a
now reflect the resonance at vibronic frequency w,. The corresponding lineshape
functions in Figure 16.5b reflect the oscillatory character: in the case of undamped
mode g(t) follows a shifted cosine function, while for the damped mode the os-
cillations decay into a straight line showing decay time of vibronic coherences.
Absorption spectrum of such system is presented in Figure 16.5¢ for two values
of the damping strength y. The spectrum demonstrates three well resolved peaks
of vibrational progression at frequencies @ = w.q, Weq + Wo and wg + 2wy. In
the case of undamped vibrations (dashed line in Figure 16.5¢), the progression is
well resolved since all peaks of the progression have the same shape. The damped
vibrations cause nonuniform broadening of peaks in the progression. Peaks that
are at higher energies are broadened more. As a result, the higher-energy shoulder
of the vibrational progression will be reduced due to damped vibrations. This is
essentially the consequence of the fact that the higher-quantum vibrational states
experience larger decay rates as found in (8.63) of Section 8.4.

The realistic electronic two-state system is usually coupled to the set of vibra-
tional modes where some of them are coherent, some overdamped. This can be
modeled using the compound bath model with the spectral density consisting of
several parts. It should be noted that the lineshape function is the linear transfor-
mation of the spectral density. Thus, utilization of the lineshape function g« (t) +
ga(t), composed of the overdamped semi-classical bath and damped vibrations, gives

30 T T T
25
<
3 15 I‘
:\/ ! ll
Q10 1 '|
5 1 ||
o= ! . |
2y —~v 0 7 24 | 1
(a) w — wy 8 !
| |
|
0.08 ]
~< 006 gd(t)
=" "
= oo Y = wo I
= gu(t) o I\
L 0.02
& \ ,t\ ,,\‘ e ,/\\ " (R ;]\
0.00 v I VIR L N /. AN
0 2% 4w 6w 8w 10w 0 @0 2w
(b) wot (¢) W= Weg

Figure 16.5 (a) Spectral densities of un-
damped (dashed line) and damped (solid line)
baths; (b) the real part of the lineshape func-
tions corresponding to the different vibronic
bath models corresponding to (a). (c) Ab-
sorption spectra of the displaced harmonic

oscillator (the Huang—Rhys factor s = 0.3)
using ¥ = wyq of the damped bath (solid line)
and y < wy for the undamped bath (dashed
line). In the undamped case the progression
peaks are additionally broadened for clarity.
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16.2 Molecular System with Few Excited States

the broadened vibrational progression in the spectrum. The 2D spectra obtained
by using this composition of the system-bath correlation is the commonly used
approach to reflect different types of fluctuations and is discussed in detail in the
literature [43, 44, 94].

Expressions for the third order response function in terms of the lineshape
functions can be obtained using the second order cumulant expansion. The two-
dimensional signals, contributing to the rephasing and nonrephasing spectrum
can be easily separated. The complex two-dimensional signal of a molecule is then
given by

1 .
Skl(tSY ty, tl) — Ee—w)o(ts—tl)
x e~ 8" (itt)—g"(t)+g" 1+ttt
« eRelgl2t13)+g(t2)—g(13)]
x cos {Im [g(t, + t3) + g(t2) + g(t3)]} (16.34)

for the rephasing signal and

Sku(ts, b, t1) = %e_i’”‘)(“"'”)
« e8liti2)—g()—g(ii++13)
« eRelgl2ti3)+g(2)—g(t5)]
x cos {Im [g(t, + t3) + g(t2) — g(t3)]} (16.35)

for the nonrephasing. Notice that since we associate the two dimensional spectra
directly with the response functions in the impulsive limit, we use time delays
th =T, tp =Tyand t3 = t.

The rephasing 2D spectrum and its time-resolved peak intensities are plotted
in Figure 16.6. For the vibronic bath, two cases are illustrated: damped vibrations
(y = wo/4, Figure 16.6a,b) and undamped vibrations (y — 0, Figure 16.6¢,d).
As described above in both cases we use the compound spectral density by adding
together the lineshape function representing the semiclassical overdamped bath and
the damped vibrational part. In the figures, 2D spectra at population times t, = 0,
2nwy ! and 5mwy ! are plotted. Other parameters are such that the reorganization
energy in all cases was the same (2swy).

In the 2D plots we observe two strong diagonal peaks (1-1 and 2-2) reflecting the
vibrational progression of the absorption. The two off-diagonal crosspeaks (1-2 and
2-1) show coherent quantum interplay of vibronic inner structure. The peak line-
shapes show slightly larger broadenings in spectra obtained by using the damped
spectral density compared to those of undamped vibrations. The nonuniform broad-
ening, as introduced in the absorption simulations previously, is observed in the 2D
spectrum as well. The time-resolved peak intensities display the coherent nature of
the vibrational system: the peaks oscillate coherently in time with the vibrational
frequency. Decay of these coherences in the case of damped vibrations results in
vanishing of cross-peaks: as all spectra are normalized to the maximum of the
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Figure 16.6 Time-resolved 2D spectra of damped bath. The corresponding 2D spectra
vibrations. (a) Intensities of peaks in the with semiclassical bathat T, = t, = 0,
real parts of the rephrasing 2D spectra as 2nwgy ' and 5wy ' are depicted in (b—d). All
functions of the delay time t; in the case of values are normalized to the maximum of the
damped vibrations with semi-classical (sol- rephasing spectrum at T, = t, = 0.

id lines) and quantum (dashed lines) over-

rephasing signal at t, = 0, the intensities of the crosspeaks and the upper diago-
nal peak are notably lower than those of the main peak at (w1, w3) = (Weg, @ ¢g).
Also, the negative features are more pronounced in spectra of the monomer with
undamped vibrations.

The main differences in oscillatory dynamics of peaks in 2D spectra is the
damping-induced decay of coherences in the case of damped vibrations. Such a
decay can be easily related to the value of the damping strength of the vibrational
mode y. The shape of functions of the spectral peak dynamics obtained by using
the quantum model of the overdamped bath coincides with the semi-classical bath
simulations at short population times.

16.3
Electronic Dimer

An excitonically coupled dimer is an archetypical molecular system describing ex-
citation properties in molecular aggregates. It has been extensively described in
Section 5.3. The general scheme of a realistic molecular heterodimer as well as the
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16.3 Electronic Dimer

corresponding exciton band structure are presented in Figure 16.7a—c. The dimer
consists of two coupled chromophores, represented by two dipoles d; and d, with
the interdipole distance vector Ry, and angle ¢. In the Frenkel exciton Hamiltoni-
an the chromophore energies are denoted as €; and €, and the coupling constant
is J, thus the Hamiltonian has four terms

A

Fno = @16}y + €} + J (], + aar) - (16.36)

The eigenenergies and wave functions of this Hamiltonian can be explicitly calcu-
lated, as was done in Section 5.3.

Let us consider the features of the two-dimensional spectrum of the electronic
dimer, that can be extended to the aggregates of more molecules. In these systems
there are two additional effects compared to the single molecule. These include the
excitation energy transfer, which should be understood as the energy relaxation be-
tween the exciton states, what is the incoherent effect, and the resonance coupling
between chromophores in the site basis, which is the coherent effect causing the
exciton delocalization in the eigenstate basis. These two properties induce three
types of peaks into the 2D rephasing and nonrephasing spectra.

The 2D spectra are constructed by pathways R; to R4 (15.13)—(15.20). The path-
ways R; and R, contain time evolutions of the system in the excited state, 24(¢9) (t,).
An arbitrary changes in the excited state propagation will be displayed in the two-
dimensional rephasing or nonrephasing spectrum. (R; and R4 pathways have dif-
ferent character.) A complete population transfer from one excited state to another,
therefore, exhibits itself in 2D spectrum as a transfer of the original peak ampli-

d, dy
\2/ WYY L) - N
N/ ] “ I_/
@ T A O
N
Krehx - 1" w3
P 1
S R S B
|be) B 2 g 1\ 7
(a) B -
Weg () L
R R
lag) |bg) L |g) |er |
(b) (9 (d)

Figure 16.7 Schemes of transition dipoles,
energy levels and 2D spectrum of a weakly
coupled dimer. (a) Transition dipole vectors
in real space associated with chromophore
molecules; (b) representation of the dimer
by the energy states of its monomers; (c)
representation by collective states - excitons

lg) = ‘ag)‘bg)x [1) = ‘ae)“’g) + C‘”g)“’e)x

[2) = clac)lbg) — |ag)|b.) (these are

not normalized states, ¢ is a constant), and

| f) = lae)|be). (d) The features of the corre-
sponding 2D spectra: the full circles represent
diagonal peaks of a weakly coupled dimer in-
cluding the energy relaxation peaks. Dashed
circles represent the peaks of a coupled dimer.
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16 Coherent Two-Dimensional Spectroscopy

tude to a new spectra position. This results in a crosspeak between two frequency
regions as in Figure 16.7b—d.

Population transfer is one way for an off-diagonal feature or a crosspeak to appear
in the 2D spectrum. In the dimer from Figure 16.7a one can imagine the R; path-
way (15.15) starting by the transition from the ground state of the monomer A to its
excited state, followed by its de-excitation by the second pulse, propagation in the
ground state during t,, and further followed by the excitation of the monomer B
by the third pulse. Such R; pathway raises a static crosspeak (with respect to t,) at
the same spectral position as the one previously identified to be due to population
transfer. Notice that such transferless crosspeaks (second type) could also be easily
constructed for systems which are not coupled, because all transitions were done
by light alone. However, such crosspeaks survive only in the system of coupled
chromophores.

The third type of crosspeak also appears due to coupling between molecules.
For example, in the R, pathway (15.14) we have the following pattern of time evo-
lutions 4(8)(3)04(¢9) (t,)U4'89) (t,). Notice that superscript e here denotes the band
of states. In the secular approximation we may have the following explicit term
ULE (1)U (1)) (1) where the subscripts label specific energy levels. After
Fourier transforms of t; — w; and t; — w3 this contribution will result in the
crosspeak at (w3w1) = (0,0, ). However, the t, evolution of this crosspeak
is of type U5 (t2) o exp(—iw,,., ). We thus get the t, dependant crosspeak that
has a coherent oscillatory character. These elements of the density matrix in the t,
interval p,,., are the so-called one-exciton coherences and they map onto the 2D
spectrum as oscillatory crosspeaks. This results in a complicated time evolution of
the crosspeaks during the time #, and provides the possibility to observe negative
features in a spectrum that would otherwise be expected to represent a purely
absorptive features.

As we find, the system with several energy levels in the e band shows a compli-
cated picture for the spectroscopy. In real samples we always deal with the huge
ensemble of molecules. The question might arise, why then do uncoupled two-
level molecules yield the spectrum without crosspeaks? To answer this question
we need to count all pathways that the perturbation theory requires for the aggre-
gate (or the dimer is sufficient). We can do that with the help of Figure 16.7b,c.
They represent the dimer in terms of collective states introduced in Chapter 5.
The two-level schemes are equivalent to an uncoupled dimer. Let us now count
the rephasing pathways, (15.44), that can contribute to the crosspeak, that is, those
that have different first and third interval frequencies. They are presented in Fig-
ure 16.8, where one can immediately notice that there are four positive (Ry, and
R3,) and four negative (R;f) contributions to the signal. Although the doubly ex-
cited state | f) is reached in the R;s part of the rephasing response, all transitions
can be viewed as normal transitions from the ground state to the excited state in
one of the monomers. For example, [1) — | f) is the |b,) — |b,) transition, while
the monomer a remains in its excited state |a,). In fact, for each positive signal we
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16.3 Electronic Dimer

[1)|ts| (gl 12)|ts| (gl 1F)]ts |2l | F)|ts| (1
Ry [1)|t2)(2 12)|t2((1] [1)]t2|(2] 12)[t2 (1]
lg)|t2| (2 lg){ta| (1] lg) [t |(2] lg) [t (1]
l9) (4l |9){gl . |9) (9] l9) (gl
Ri;
l9) (9] l9) (gl 1) (1] 12)(2|
Rs, 12)|t3|{g] [D)|ts (gl 1£)|ts| (1] | )|ts|(2]
l9)|t2((gl |9)|t2|(gl 1) [t2 (1] 12)|t2(2|
lg)|tx |1 |9)|t |2 lg) [t |(1] lg) [t |2
|9) (gl l9) (4l |9) (gl l9) (4l
Figure 16.8 Rephasing Liouville pathways Using the definitions from Figure 16.7 the RUr
for crosspeak in a dimer 2D spectrum. The pathways can be shown to contain the same
pathways denoted by the same lower case transitions as those of the Ryg and Rsg type.

letter cancel exactly for an uncoupled dimer.

can find a corresponding negative one, and all crosspeaks cancel. For complexes of
uncoupled monomers therefore no crosspeak can appear.

In the case of the molecular aggregates, the main message of the present anal-
ysis is that one must not neglect the presence of higher lying two-exciton states.
The omission of two-exciton states in calculating the 2D spectrum would lead to
unphysical crosspeaks between all energy levels of the one-exciton band.

These effects can be demonstrated on a molecular dimer. To include a finite
spectral broadening and energy relaxation effects let the dimer interacts with the
environment represented by two overdamped Brownian oscillator coordinates, fast
and slow, with relaxation rates A and s, respectively. The semi-classical model
of spectral density as described in Section 8.6 is

7 _ a)/ll
C’(w) =2 Z o (16.37)

The two modes are independent of each other. Here /1 denotes the relaxation rate
of the bath. The chromophores have their individual environments, which induce
the fluctuations of molecular transition energies, as described by (16.37). The cor-
responding lineshape function in the high-temperature limit is

2k T — i
gy = 3 a2l g gy (16.38)
I=S,F

The parameters can be chosen typical of pigment molecules in photosynthetic
proteins [98, 99]. The dimer is defined by €; = 11800cm™!, ¢, = 12200cm™!,
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J = 100cm™!, ¢ = m/6. Bath induced parameters are Ar = 30cm™?!, 15 =
60cm™?!, A;! = 50fs, 45! = 10° ps. The slow bath is used to model the static
fluctuations with timescale A5 — 0. The population transfer rates are obtained
using the secular Redfield theory: for the exciton eigenstates we have (downward)
Ki—y/] = 2.69 and (upward) Ky« 1/] = 2.54 x 1073 . The 2D signals were calcu-
lated as described in Section 15.2.

As a reference we first present the ideal impulsive 2D photon echo rephasing
signal corresponding to the case of the short laser pulses when their spectral band-
width is much larger than the width of the spectral region under consideration,
and time delays between pulses are equivalent with the time delays between in-
teractions in the response functions. The rephasing spectrum at two delay times
is presented in the first row of Figure 16.9. The dissection of the spectra to the in-
duced absorption (IA), stimulated emission (SE) and the ground state bleach (GSB)
components corresponding to different Liouville space pathways are presented in
Figure 16.10 for the real part of the rephasing signal. The population transport di-
agrams are merged together with the coherent (no transport) diagrams in these
figures. The spectra contain both diagonal and off-diagonal elements. Across the
diagonal the peaks are broadened due to the homogeneous broadening caused by
the fast term of bath oscillations. The lineshapes are extensively elongated along
the diagonal due to the slow term of bath oscillations. The limit T, <« A5 en-
sures that the diagonal elongation remains for all delay times (such approach is
very efficient to model the inhomogeneous broadening, and represents the static

eo+A

w3

€0

EQ—A

eo+A

0%

€0

E()AA

EQ*A. €0 .EOJFA. eo—A €0 .E()*IFA. eo—A g9 €ot+A
(b) |wr |wr | | |

Figure 16.9 2D photon echo broad-bandwidth pulse signal at three delay times as indicated
on each subplot. First row: Broad-bandwidth ideal signal. Second row: full signal reconstructed
using the set of narrow-bandwidth simulations. See text for simulation parameters.

I

—F

95U8917 SUOWILLIOD SAITeRID 3|qeal|dde sy Ag peulenof a1e ss ol YO ‘8sN JO SajnJ 4oy Akeiqi8uluO AS]1M UO (SUOTIPUOD-pUe-SWB)W0o" A8 | 1M Ale.d 1[pu1 Uo//SdNy) SUONIPUOD Pue SWd | 841 89S *[Z0z//0/7T] Uo Arlgiauliuo oI ‘AISIeAluN UWION BUIYD LINoS Ag /10p/wod A3 i Alelgjeuljuoy/:sdny wolj pspeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

w3

w3

w3

go+A

€0

E(]AA

go+A

€0

EOAA

go+A

€0

EOAA

Chap. c16 — 2013/6/3 — page 369 — le-tex

le) (el
[F)t3|(el
le/)|t2f(el

[g)[t1|Cel

lg) (gl

lg) (gl

16.3 Electronic Dimer

lg) (gl

le")|t3|(al

[g)|t2|(gl

T

T
zf e,

(I

T

—
| To > Kt

—2

[ P ;j : r
I {
L 1 L 1 L 1 L L \\\\ 1t .
go—A g0 €o0+A gg—A g0 €o+
jwr | | |

Figure 16.10 The contributions of different
Liouville space pathways to the real (absorp-
tive) part of rephasing 2D spectra of exciton-
ically coupled dimer at the impulsive limit.
First column — excited state absorption, sec-

ond — excited state emission, third — ground
state bleach. Corresponding constributions

are drawn above the 2D plots. All graphs are
normalized to the maximum of the most in-

tensive contribution.

disorder effect). Across the diagonal the peaks are broadened due to the homoge-

neous broadening caused by the fast term of bath oscillations.

At the short delay times (T, = 0) the population transport is negligible and the
diagonal peaks consist solely of the SE and GSB contributions. These two diagonal
peaks represent two single-exciton eigenstates and are created when e = ¢/, while
the off-diagonal peaks correspond to e # €. At zero delay, the crosspeaks are cre-
ated by the superposition of negative IA and positive GSB and SE contributions.
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At longer delay times we see the rise of the lower-energy peaks at w1 = w3 = €,
demonstrating the downhill population transfer in the excitonic system. Only IA
and SE contributions change over the population time T,. GSB is conserved since
there is no dynamics in the ground state contrary to the IA and SE diagrams, which
depend on the population dynamics and on the coherence, and dephasing terms.
Atlong T, the diagonal IA and off-diagonal SE peaks come from population trans-
port.

Realistic optical pulses are not infinitely short. Pulses with the finite length sim-
ulate the experiment more realistically, while the impulsive limit simulations are
better for the purely phenomenological understanding of different features. Be-
cause of the finite pulse duration additional effects of pulse overlap may arise [107].
The narrow-bandwidth pulses also act as band-pass filters of 2D spectra [108] since
changing the length of all pulses tunes their spectral bandwidths o' = [0];. The
realistic pulses can be modeled using Gaussian shapes. They have two addition-
al parameters: the carrier frequencies €2; and pulse lengths [0,]; (or bandwidths).
Such pulses can be included as described in Section 15.1.3. Although in this section
we have described the case of the same pulse carrier frequency; however, extension
to the different carrier frequencies is trivial [107].

The wavelengths of laser pulses can be tuned independently to select certain res-
onances in the exciton system. By comparing the pulse bandwidths to the linewidth
of a single peak in the spectra, we can obtain certain detection regimes. We can
assume that the pulse width is narrower than the whole exciton bandwidth (o, <
A.), but broader than the width of a single peak (6, > y,) by setting 0, = 1.2y, ~
0.16A,. The model dimer has two single-exciton states with energies ¢,, and ¢,;
the double-exciton state energy is ey = &,, + &.,. The transition energies are
e = &, and o f,, = &,,. Therefore, only two resonant pulse frequencies have
to be considered. By considering all possible configurations of the carrier frequen-
cies of the incoming three pulses, we obtain 2° = 8 possible permutations of the
pulse frequencies, for example [£2, £2,, 23] = [e1, €1, €1], [€1, €1, €2] - . ., and so on.
This laser pulse wavelength tuning scheme is sketched in Figure 16.11. However,
once we select the resonant contributions, we find only six resonant configura-
tions, the four most significant of which are presented in Figure 16.12 (by select-
ing the resonant pathways we have also considered population transport at nonzero
delays T5).

Appearance of specific spectral elements in manipulated spectra is controlled by
laser pulse frequencies. The first laser pulse “controls” selection of the spectral ele-
ment at w;. For instance, in configurations with ©; = &,,, only spectral elements
for w1 = w,,; do notvanish. The second pulse determines the state, which further
evolves in the range of T,.

It is remarkable that pulses select the distinct Liouville space pathways with high
resolution. Various diagonal peaks and the crosspeaks now can be separately char-
acterized including their shape and amplitude. Their time evolution follows densi-
ty matrix dynamics at corresponding Liouville space pathways. The spectra in Fig-
ure 16.9b, reconstructed by summing up all the signals of different laser pulse con-
figurations, resemble the broad-bandwidth signals (the second row in Figure 16.9)
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Figure 16.11 Laser pulse wavelength tuning
scheme for the FWM experiment. The wave-
lengths of laser pulses are tuned independent-
ly to select certain resonances in the exciton
system. In this example, the first (—k1) and
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second (+k;) pulses have wavelength reso-
nantto we,g = o fo, transition, while the
third pulse (+k3) is tuned to we,g = @ f.
We use notation [e1, €1, €2] for this configura-
tion of laser frequencies.
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Figure 16.12 Four most intensive narrow-
bandwidth signals leading to resonant se-
lection of Feynman diagrams in the signal
at delay time T, = 10 ps. The signals were
simulated by varying central pulse frequen-
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cies while keeping the pulse bandwidths un-
changed. Utilization of other possible laser
pulse configurations gives negligible signals at
T, 3> K;_',. All graphs are normalized to the
global maximum ([e2, €2, 2] contribution).

very closely. By comparing the spectra it is noticeable that peaks of reconstructed
broad-bandwidth spectra are slightly narrower due to the finite bandwidth of the
pulses. So this pathway selection phenomenon can be denoted as the density ma-
trix tomography.
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Extending the phenomenon to the broader class of systems the laser pulse over-
lap effect can be quantitatively characterized as follows. The response function
of an excitonic system is characterized by two parameters: the splitting of the
single-exciton states, A,, and the characteristic linewidth of each single-exciton
resonance y. The time-domain response functions then experiences the splitting-
related oscillations with frequency A, and the decay with timescale 1. In our
case A, > v, and we observe well-separated exciton resonances. The ideal impul-
sive conditions are fulfilled when o, > A, and 0, > v.. This corresponds to the
impulsive regime of ultrashort pulses, when their overlaps can be neglected. For re-
alistic finite-bandwidth Gaussian pulses we need to consider pulse durations, o'
In two dimensions of time the whole area where the response function is not zero
is 2. The area, where pulses overlap, is o, 2. The ratio = 0,2/ ;2 thus char-
acterizes the relative pulse-overlap magnitude. Our finite-bandwidth simulations
are in the regime y, < 0, < A,. We have # < 1 and the pulses can thus specif-
ically select resonant peaks, the response function decays slowly compared to the
pulse duration and, therefore, the pulse-overlaps make a very small contribution.
We call this regime quasi-impulsive. That is the ideal regime to be used for selection
of specific pathways, i.e. for tomography, of the system with well-separated peaks.
The ideal impulsive experiment can then be reconstructed from a set of narrow-
bandwidth measurements. Both the impulsive and quasi-impulsive measurements
yield very similar results and it is instructive to consider only the impulsive regime,
which is mostly reviewed in this book.

The other narrow-bandwidth limit is when ¢, < y,. irrespective of A,. In this
case, the response function decays much faster than the pulse duration and the
experiment approaches the frequency domain regime. Varying central frequen-
cies can select certain resonances, but their characterization is more complicated
since pulse overlaps dominate due to poor time resolution. This is the nonimpulsive
regime of the experiment.

16.4
Dimer of Three-Level Chromophores - Vibrational Dimer

Let us now extend the previous model system and consider a homodimer of
three-level chromophores. This model essentially represents the two coupled high-
frequency (frequency > kg T) vibrations tackled by the two dimensional measure-
ment. The Hamiltonian of the system is

2 2
A . A A Af AT oA A
ol = @0 ) ahm+ ] ) ldnt+ 5 Y 4505400, (1639)

where now operators 4 are of bosonic nature, J describes the resonance transfer of
excitations and A is the anharmonicity parameter. The one-exciton block is identi-
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cal to a homodimer of two-level systems

A = (“’" J ) (16.40)

] wo

and corresponding exciton energies and eigenvectors are identical to the ones of
the electronic dimer.

In site representation the two-exciton block can be built from the electronic
dimer by adding states @] a]|0) and a]al|0) with energies 2w + 4 which are
denoted as the overtone states of single chromophores. Together with the combina-
tion state &; &'I'L |0) we get three double-exciton states in total. The coupling constant
between the overtone states and multiexciton state with energy 2w, is now equal

to /2] as comes from the Hamiltonian matrix elements:
A 200+ 4 V2] 0
W =1 V2] 2w, V2] | (16.41)
0 V2] 2w0+ 4

Diagonalization of one- and two-exciton blocks allows us to define the exciton basis

N
lej) = D cjmd,l0), (16.42)
=1

N N
= Y ch (Cmn + iémn) atarlo) . (16.43)
m=1n=m ﬁ

The one-exciton eigenvector matrix is identical to the one given in Section 5.3. The
two-exciton eigenvector matrix in terms of the mixing angle is now

sin ¥ —cos—1 sin ¢
1 2cos /2 /2cos )2 2cos /2
—| 1 0 -1, (16.44)
\/E sin ¢ —cos¥+1 sin ¢

2sin /2 ﬁsinﬂ/z 2sin /2

where ¥ = arctan(4 ] /4) and eigenvectors are given in rows. The eigenenergies of
one- and two-exciton states are

€ =wo+ J, (16.45)

€, = Wo— ] (16.46)
and

ef =2w0+ ij;i—z&_l (16.47)

e, =200+ 4, (16.48)

e = 200 + 2]“):31—;’1 : (16.49)
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Dipole moments for the ground to one- and two-exciton states are

Hoed 1 (=1 1\ /d
)= )E)

and
__ sind4-cos¥+41 sin4cos 41
”elfl 1 2cos /2 2cos /2 dl
u, o | = — 1 -1 ( ) (16.51)
“f2 \/E __ sind+cos—1 sin+cos ¥ —1 dZ
Reps Zsin9/2 Zsin9/2
and
sin—cos ¥ —1 sin—cos ¥ —1
”ezfl 1 2cos /2 2cos /2 dl
u | =— 1 —1 ( ) . (16.52)
f2 \/E sin®—cos ¥ +1 sin®—cos ¥ 41 d2
Reps 2sin9/2 Zsino/2

Having transition dipole moments defined one can construct analytic expres-
sions of the total 2D signal from individual Feynman diagrams. Notice that we
now have the same as for the electronic dimer but we have more induced absorp-
tion Liouville space pathways. In Figure 16.13 the spectra of the dimer of three-
level molecules using different dephasing rates are presented. Coherent induced
absorption diagrams produce spectral elements on the diagonal and give oscilla-
tions of corresponding diagonal peaks, that is, perceptible in 2D spectra in the
limit of small y. However, if the dephasing rate is y >> ], the inter-state coher-
ence dynamics cannot be separated from diagonal elements and the whole spectra
resemble a single anharmonic oscillator.
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Figure 16.13 The real part of complete 2D spectra of the dimer of a three-level system with
dephasing constant y = J (a) and y = 5J (b). J = 50cm™ ' and 4 = 15cm™ in both cases.
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16.5
Interferences of the 2D Signals: General Discussion Based on an Electronic Dimer

Considerable effort has been devoted to developing methods for relating the two-
dimensional signals to dynamical properties in electronic aggregates. It is well
established that the diagonal (|w;| = w3) peak positions correspond to excita-
tion energies and linewidths show lifetimes and couplings to the environment.
The crosspeaks (Jwq| # ws3) carry additional information about couplings and
correlations of different states, which determine the energy flow pathways and
timescales.

The induced polarization vector, which is measured in the spectra, reflects dy-
namical properties of the system density matrix during each of the time delays t;,
t, and t3 (in the impulsive limit). These properties can be deduced with the help of
the Feynman diagrams given in Figure 16.14. Let us consider the rephasing signal.
The signal is proportional to the response function S fl)(h tt1) given by a sum over
all resonant pathways of the density matrix. These pathways represent sequences
of intermediate states, which show up between the various interactions with the
laser pulses. Let us label different pathways by #. The contribution of each path-
way to the signal may be represented as S,(73)(t3 tit1) = M, - G, (t3t2t1), where M,
is a geometry-dependent amplitude of the pathway given by the transition dipole
configuration and G represents the time propagators of the density matrix which
is independent of the excitation polarizations. G, (t3, t,, t1) contains all relevant
system dynamics in the pathway 7, as can be deduced from the diagrams in Fig-
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Figure 16.14 Five types of Liouville space pathways to the 2D spectrum. Open symbols
pathways of an electronic dimer. (a) Scheme denote electronic coherences during t, delay

of dimer energy levels, (b) Feynman diagrams  and full symbols the populations during t,.
for the rephasing spectrum; symbols relate
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ure 16.14: during #; the system experiences oscillations between the ground and
the singly-excited states e with inter-band optical frequency. During the delay ¢,
only intra-band excitonic properties show up. These correspond to either coherent
oscillations between two singly-excited states or populations. Population relaxation
and transport takes place as well. Inter-band oscillations are again observed during
t3 (these also include inter-band one- to two-exciton frequencies). Fourier trans-
forms with respect to #; and t; translate the inter-band oscillations into resonant
peaks along w; and w3 axes respectively. Excited state evolution can then be directly
followed by comparing the 2D peak patterns for various t,.

To gain some insights in Figure 16.14 we sketch the rephasing spectrum of a
simplified model dimer of two-level chromophores which has two single exciton
energy levels and a single double exciton level. The spectrum at finite ¢, contains
contributions from all diagrams, as indicated by the graphic symbols. One specific
feature that is observed purely from a symbol pattern on the 2D plot is the absence
of open symbols on the diagonal line. The full symbols reflect the populations
during the interval t,. These come from the stimulated emission and the ground
state bleach. Thus, the diagonal line of the rephasing spectrum always contains
only populations and in the secular density matrix theories these are either static
(no relaxation) or exponential functions of time (incoherent exciton relaxation). The
first conclusion that comes out is that the diagonal peaks within this level of theory
are never oscillatory. The second conclusion comes from simple inspection that for
one bleach contribution always comes one stimulated emission contribution, what
corresponds to the effective two-level system. The two-level system shows photon
echo phenomenon in the rephasing experiment configuration. Thus, the diagonal
line of the 2D rephasing spectrum always includes the photon echo and thus shows
diagonally elongated lineshapes. These two conclusions, as they can be associated
with the independent two-level systems, are not related to the dimer, this applies
for any (electronic and vibrational) excitonic aggregates.

So now how about crosspeaks? The crosspeaks in Figure 16.14 are composed of
both open and solid symbols. The open symbols must show oscillatory #, evolution,
while solid symbols are slowly-varying. The open symbols originate from electronic
coherences during t,, thus the place to look for electronic coherent effects is the
off-diagonal region in the rephasing spectrum. This again applies not only for the
dimer but for an arbitrary excitonic aggregate.

The amplitude M, of a pathway is a crucial parameter that determines how
strong a specific feature emerges in the total spectrum. It turns out, the amplitude
can be controlled by polarization configuration of the laser pulses in the experiment
design.

The amplitude of a pathway has fundamental symmetry properties, that is, it is
invariant to certain permutations of pulse polarization configurations (PPC). First
we notice that when the delay time t, in Figure 16.14 is set to 0, the signal must be
invariant to exchange of the second and third pulses since they are indistinguish-
able. This implies the permutation symmetry of wavevectors and polarizations of
these two pulses at t, = 0. As quantum dynamics develops during t, > 0 this
symmetry breaks down.
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Three independent pulse polarization configurations which exist for isotropic
systems in the dipole approximation [102] can be inferred from (15.107) (Sec-
tion 15.2.6). These are obtained when

FUe) = | (es- €2)(e3 - €1) (16.53)

is equal to one of

1 0 0
o1, (1] (16.54)
0 0 1

These three independent unit vectors correspond to (ese3e,e1) = (xxyy), (xyxy),
(xyyx). All other configurations can then be obtained from these three fundamen-
tal ones as their linear superpositions. Based on this property and using the idea of
the previous paragraph we can write a differential signal

3 3
A=5s0,, -8, . (16.55)

Here the subscript indicates the pulse polarization configuration as pulse polar-
ization directions v4v3v,v;. This signal must vanish identically at , = 0 due to
the above described symmetry and will gradually build up, with #, showing coher-
ent evolution, dephasing and transport. The signal A thus highlights dynamical
features of the spectra. However, these features are mixed in A.

For our model dimer in Figure 16.14 the signal A with ¢, will show only oscillat-
ing crosspeaks due to open symbols, later these will decay due to dephasing and the
stationary crosspeaks will develop due to the ground state bleach and the induced
absorption. The higher energy diagonal peak at ¢, will develop due to population
relaxation from state e to e’ together with down-pointing triangles (the filled circle
with filled up pointing triangle both corresponding to the higher energy state e,
will disappear).

Other properties of the pathways lead to more symmetries. The pathways # may
be classified according to whether the state of the system during , is a popula-
tion (population pathways, #,,) or a coherence (coherent pathways, 7). These
are represented, respectively, by diagonal (p,.) and off-diagonal (p,., € # €’) exci-
ton density matrix elements. Filled symbols in Figure 16.14 indicate contributions
from population pathways and open symbols — from coherence pathways. As can
be seen, a common feature of all population pathways is that the first two interac-
tions induce the same transition, a = d (doorway). The last two interactions induce
the same transition too, @ = w (window). The amplitudes of this set of interactions
for isotropic systems for three independent pulse polarization configurations are
as follows:

2
My, (xx7Y) = 35 2ulpl—(ny, - 14)’] (16.56)
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1
My (xy%Y) = My, (xyy) = 35 [—mamd + 3(pw - #a)’] - (16.57)

We find that the population pathways have the symmetry for an arbitrary delay ¢,
(here the PPC is denoted by M, (v4v3v,v1)). Based on this symmetry it is possible
to use the combination of PPC

B=5SY,.— S0, (16.58)

to cancel population signatures and to display coherent quantum dynamics. The
B signal can be interpreted as follows: only coherent ¢, dynamics will be seen by
the coherence pathways. For our model dimer in Figure 16.14 all filled symbols
will thus be eliminated in B and the open symbols from excited state absorption
and stimulated emission with density matrix coherences will remain. This signal
is thus very promising for inspection of electronic coherences in molecular ag-
gregates. Additionally, as we described above the diagonal line in the 2D rephasing
spectrum is covered by population involving Liouville space pathways. The B signal
thus eliminates the diagonal features in the rephasing 2D spectrum. Only off-diagonal
(open symbol) contribution will thus remain. This conclusion again applies to a
general excitonic aggregate.

Another set of pathways can be isolated by inspecting the coherent contribution
to stimulated emission pathway in Figure 16.14b. From the SE diagram we find that
these pathways are characterized by only two optical transitions: the first and third
transitions on the right side of the diagram are identical a = r, while the second
and fourth transitions on the left side of the diagram are also identical a =1 (we
notice that this property is valid for density matrix coherences p,. and populations
Pee during t,). By calculating the pathway amplitude we find

SE SE 1
My (exyy) = Mg (xyy) = o [~ain? + 30 )] (16.59)
2
SE
My (eyxy) = 55 [2mimd = ()] (16.60)

This suggests an additional symmetry and an additional signal which cancels exci-
tonic coherences in SE pathway

c=5s0,.,—s%,,. (16.61)

The C signal will eliminate the stimulated emission coherent pathways: these over-
lap with population pathways (induced absorption coherent peaks along w3 which
reflect double-exciton resonances are shifted from these crosspeaks when the two-
exciton state energy is different from ¢, + &,/). Population relaxation during ¢,
can then be monitored through the redistribution of crosspeak amplitudes. In Fig-
ure 16.14 the signal C eliminates the open and filled squares from the second
diagram at all delay times. By checking the GSB diagram we find that diamonds at
the diagonal will also be eliminated. Thus, the diagonal peaks will be also eliminat-
ed in the C signal the population transport contribution (shaded symbols) will be
enhanced.
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It should also be noted that at t, = 0 we find B = C, which is a good refer-
ence point and A = B + C at any delay time. These signals can thus be used
for realistic electronic systems which can lead to better resolution of coherent and
dissipative exciton dynamics. We demonstrate the application of these signals in
Section 17.2.2.

16.6
Vibrational vs. Electronic Coherences in 2D Spectrum of Molecular Systems

In previous sections we have analyzed distinct systems: electronic dimers and
monomers coupled to vibrations. A few simple electronic level systems with well
defined high-frequency vibrations present an important study case of the general
phenomena of electron-phonon interaction in the molecular system. In this section
we show that the two systems can show a considerable similarity.

In molecules and their aggregates, electronic transitions are coupled to various
intra- and intermolecular vibrational modes. Vibrational energies of these are of
the order of 100-3000 cm ™, while the magnitudes of the resonant couplings, J,
in excitonic aggregates (for example, in photosynthetic pigment-protein complexes
or in J-aggregates) are in the same range. Thus, vibronic and excitonic systems
show considerable spectroscopic similarities. Because of excitonic or vibrational
coherences, electronic and/or vibrational beats in the 2D spectrum are expected
as described in Sections 16.2.2 and 16.5 (consider B signal). In complexes of cou-
pled molecules with transitions possibly modulated by vibrational modes it might
be difficult to decide what is the origin of oscillations in the 2D spectrum. Indeed,
similar spectral beats originating entirely from a high-energy vibrational wavepack-
et motion have been observed [109, 110].

We can compare two generic model systems (Figure 16.15b,c) which exhibit dis-
tinct internal coherent dynamics. The simplest model of an isolated molecular elec-
tronic excitation is the vibronic system represented by two electronic states, |g) and
|e), which are coupled to a one-dimensional nuclear coordinate g. This is the cele-
brated displaced oscillator (DO) system (Figure 16.15c). Taking # = 1, the vibronic
potential energy surface of the |e) state is shifted up by the electronic transition
energy w.g and its minimum is shifted by d with respect to the ground state |g); d
is the dimensionless displacement. This setup results in two vibrational ladders of
quantum sub-states |g,,) and |e,), m,n = 0,..., 0o, characterized by the Huang—
Rhys (HR) factor HR = d?/2 as described in Section 16.2.2.

The other model system, which shows similar spectroscopic properties but has
completely different coherent internal dynamics, is the excitonic homodimer (ED)
without vibrations. It consists of two two-level chromophores (sites) with identical
transition energies €. The two sites are coupled by the inter-site resonance cou-
pling J. As a result, the dimer has one ground state |g), two single-exciton states
(le1) and |e;) with energies &,, ., = € £ ], respectively), and a single double-exciton
state | f) with energy ¢ f = 2e — 4, where 4 is the bi-exciton binding energy.
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(b)  Electronic dimer  (c) Displaced oscillator

Figure 16.15 Energy level structure of the electronic dimer (b) and displaced oscillator (c) and
corresponding linear absorption spectra (a). Dash-dotted line in (a) reflects the typical laser
bandwith.

The absorption spectrum of both systems has been described, but it is construc-
tive to revisit its main features here. It is as follows. The absorption of the dis-
placed oscillator is determined by transitions from the |g,,) vibrational ladder into
|en) scaled by the Franck—Condon (FC) vibrational wavefunction overlaps. Choos-
ing HR = 0.3 and k3T ~ }w, and assuming Lorentzian lineshapes with the
linewidth y, we get the vibrational progression in the absorption spectrum (dashed
line in Figure 16.15). Here w, is the vibrational energy. The most intensive peaks
at w.g and w4 + g correspond to 0-0 and 0-1 vibronic transitions.

Qualitatively similar peak structure is featured in the absorption of the electronic
dimer, where the spectrum shows two optical transitions |g) — |e;) and |g) —
le2), assuming both are allowed. Choosing | = /2 and the angle ¢ between
the chromophore transition dipoles equal to /6, and using adequate linewidth
parameters, we get absorption peaks (solid line in Figure 16.15) that exactly match
the strongest two peaks of the displaced oscillator. The absorption spectrum thus
does not show the difference between these two distinct systems.

Let us now consider the two-dimensional rephasing spectrum. As described in
Section 16.1 the Liouville space pathways can raise as static as oscillatory peaks. We
can then write the 2DPE plot by expressing the signal as a sum of peaks Y, which
have static (from populations) and oscillatory (from coherences) parts:

SR(G)3, tz, 6()1) = e—‘/ztzzi i Lij((/UL 6!)3)

X [Alzj + A5 - cos(lwij|t + ¢ij(w1,w3))] . (16.62)

Here w;; is the characteristic oscillatory frequency of a peak (ij), A" j(t2) and
A (tz) are the real parts of orientationally averaged prefactors of population and
coherence (electronic or vibronic) contributions, respectively. The spectral line-
shape is given by L;; (w1, w3).
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Figure 16.16 The amplitudes of oscillatory peaks of 2D spectra of the DO model for k; signal.
Note that the negative amplitude denotes a phase shift of 7 of the oscillation.

To apply this expression to the two model systems, we assume a typical situation
where the carrier frequencies of the laser pulses is tuned to the center of the ab-
sorption spectrum and their bandwidths select the two strongest absorption peaks.
In the 2D spectra two diagonal and two off-diagonal peaks for ED and DO are ob-
served. Indices i and j in (16.62) run over the positions of the peaks and thus can
be (1,1), (1,2), (2,1), and (2,2). For clarity we study the spectral dynamics with ¢, at
the short delays.

The transition dipole properties of the ED result in the picture where all static
amplitudes of the ED are positive and the crosspeaks have equal amplitudes A%, =
AP, . The oscillatory amplitudes of the crosspeaks are equal as well: AS, = AS,. The
spectral beats with t, can thus only have the same phases in the 2D spectrum when
measured at peak centers. Additionally, the oscillatory ESE and ESA parts in ED
cancel each other if 4 = 0 and their broadenings are equal. As these relationships
do not depend on coupling | and transition dipole orientations, all ED systems
should behave similarly.

The amplitude relationships, however, are different for the displaced oscillator
system. The amplitudes AS; of the oscillatory peaks now depend on the Huang-
Rhys factor and are plotted in Figure 16.16. The amplitudes AS; and A5, maintain
the opposite sign when HR < 2 and are both positive when 2 < HR < 3. The
oscillation amplitudes AS; and AS, change the sign at HR = 1. Amplitudes A,
and AY, are always positive. The amplitudes of static contributions are positive in
the whole range of parameters.

We thus find very different behavior of oscillatory peaks of DO and ED systems.
A realistic 2D spectra for both DO and ED systems calculated by including phe-
nomenological relaxation and Gaussian laser pulse shapes [101, 107] are plotted
in Figure 16.17. The structure and the #, evolution of the spectra illustrate the dy-
namics discussed above and clearly shows the distinctive spectral properties of the
vibronic vs. electronic system: (i) diagonal peaks in the k; signal oscillate in DO,
but only exponentially decay in ED (the oscillatory traces come from the overlap-
ping tails of off-diagonal peaks), (ii) the relative amplitude of oscillations is much
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Figure 16.17 2DPE spectra and peak values of the DO and ED as a function of population time
ty, of the k| and ky; signals. Spectra are normalized to the maxima of the total spectra of the DO
and ED.

stronger in DO as compared to ED, where the ESA and ESE cancelation suppresses
the oscillations, (iii) opposite oscillation phases are observed in DO, while all peaks
oscillate in-phase in ED.

Weakly damped electronic and vibronic coherent wavepackets in molecular sys-
tems can thus be discriminated based on fundamental theoretical considerations.
Dynamics of diagonal peaks and crosspeaks as well as the relative phase between
them in the rephasing signal can now be classified for vibrational and excitonic sys-
tems as follows. (i) Static diagonal peaks and oscillatory off-diagonal peaks signify
pure electronic coherences, not involved in the energy transport. (ii) Oscillatory di-
agonal peaks in accord with off-diagonal peaks (0 or 7t phase relationships) signify
vibronic origins. The oscillation phase is 0 for electronic coherences and 0 or 7 for
vibronic coherences.
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17
Two Dimensional Spectroscopy Applications for Photosynthetic
Excitons

The model systems described in previous chapters are useful for physical under-
standing and interpretations of the spectroscopy measurements. The spectra and
dynamic features related to the transient system evolution in the nonequilibrium
excited states can thus be easily understood. Realistic systems can show much more
complicated dynamics which we describe next. In this chapter we discuss applica-
tions of this theory to the photosynthetic pigment-protein complexes. For most of
the simulations presented in this chapter the Frenkel exciton model has been used
including the secular population transport model unless indicated separately. The
spectral response functions and the two dimensional spectra have been calculat-
ed using the expressions with the lineshape functions. In the following only the
rephasing 2D spectra are discussed as they display the photon echo effect mapped
onto the diagonally elongated lineshapes of various peaks. As this book is about
theoretical approaches, we do not describe all experimental details. Instead, in this
chapter we review some applications of theoretical approaches to the simulations
of the two-dimensional rephasing spectra of few photosynthetic aggregates.

17.1
Photosynthetic Molecular Aggregates

The harvesting of solar energy and its conversion to chemical energy are essen-
tial for all forms of life. The primary events that start the whole process of photo-
synthesis include the photon absorption, transport and charge separation events.
The charge separation in the core of pigment—protein reaction center complex-
es is the first energy conversion step in photosynthesis. The subsequent electron
transfer across a thylakoid membrane of chloroplasts triggers a proton transfer re-
action, creating a charge gradient that drives a chain of chemical reactions leading
eventually to the stable storage of solar energy [98, 99]. This complicated photo-
physcal/chemical process takes place in membrane-bound photosynthetic com-
plexes. Photosynthetic apparatuses of bacteria and higher plants are the subjects
of investigation for scientists from diverse areas trying to understand the structure
and underlying mechanisms of highly effective natural solar energy conversion. In
order to model the photosynthetic complexes of living organisms on a microscop-
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ic scale the accumulated knowledge of different fields of physics, chemistry, and
biology needs to be applied [24, 98, 99, 113]. Despite numerous experimental and
theoretical publications over the last 20 years revealing structural and spectroscopic
properties of photosynthetic complexes there are still open questions in connecting
some of their structural peculiarities with the functional properties. As more pre-
cise structures of photosynthetic complexes become available there appear more
possibilities to explore their spectral properties and excitation dynamics obtained
directly from the structural data. These results reveal the roles of different parts of
the complexes that they perform in order to optimize the efficiency of the light har-
vesting and excitation energy transfer within the particular complex and between
the complexes to the so-called reaction center, where the energy conversion takes
place.

Microscopic understanding of these processes and how they may be tuned could
be used to engineer artificial solar cells which mimic the high efficiency of natural
organisms.

Below in this section we describe a few well studied photosynthetic aggregates.

17.1.1
Fenna—-Matthews—Olson Complex

The Fenna—Matthews—Olson (FMO) complex [111, 112] in green sulfur bacteria is
the first light-harvesting system whose X-ray structure has been determined (Fig-
ure 17.1). It is known that the FMO complex mediates the transfer of excitation
energy from the light-harvesting antennae, chlorosomes, to the so-called reaction
center [113], where energy conversion from molecular exciton into the charge pair
occurs. The FMO protein is a trimer made of identical subunits, each containing
seven bacteriochlorophyll pigments. Chlorobium tepidum (C.t.) and Prosthecochlo-
ris aestuarii (P.a.) are the most thoroughly investigated species with known struc-
tures [99, 111, 112, 114, 115]. The two structures are virtually identical, with minor
differences in the positions and orientations of the bacteriochlorophylls. However,
differences in the local protein environment significantly affect the bacteriochloro-
phyll site energies. The nature of these interactions is not fully understood. A re-
cent electrostatic computation of the electrochromic shifts of the FMO site ener-
gies in both species found that the major contributions to the shifts were from the
charged amino acids and the ligands [116].

Interactions of the bacteriochlorophyll a molecules in the FMO complexes with
the local environment are thus responsible for the differences in the site energies
of these pigments. These variations determine the delocalization of the collective
electronic states (excitons) as well as their temporal and spatial energy relaxation
dynamics.

This system has been extensively studied by linear spectroscopy such as absorp-
tion as well as linear and circular dichroism [113]. The linear absorption shows
clearly a few peaks reflecting excitonic coherent transitions. These peaks have been
attributed to delocalized excitons over specific pairs of molecules. The Frenkel exci-
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Figure 17.1 Structure of the FMO aggregate: one monomer including the protein (a) and “un-
dressed” pigments (b). Shaded regions represent delocalized excitons, black solid arrows are
the molecular transition dipoles, dashed arrows the exciton relaxation pathways.

ton model has been extensively used. Its parameters (site energies and interactions)
were fitted to a number of experiments.

Two-dimensional optical spectroscopy [62, 117-119] has revealed that as the ex-
citation energy is transferred towards the reaction center it proceeds in a coherent
fashion — it is oscillatory, very fast, and one-directional. It has been suggested that
this may be due to correlated chromophore transition energy fluctuations caused
by protein thermal motion [120] or by assistance from the coherent protein vibra-
tions [110]. The FMO is thus an ideal test system where coherent vs. dissipative
processes can be studied by spectroscopic means with high resolution.

17.1.2
LH2 Aggregate of Bacterial Complexes

In general, bacterial photosynthetic apparatuses are simpler than those of the high-
er plants and often serve as trial models. One such outstanding system is the pho-
tosynthetic light harvesting complex 2 (LH2) of purple bacteria, which is distin-
guished by an extremely redshifted absorption band and a highly symmetric struc-
ture displayed in Figure 17.2 [121-123]. The absorption of the LH2 complex of
Rhodopseudomonas acidophila (now Rhodoblastus acidophilus) strain 10050 is due
to Q, transitions of the bacteriochlorophyll a molecules. These molecules are
organized in two rings, called B800 and B850 by their lowest absorption wave-
length. The overall structure of the complex is cylindrical, characterized by Co
symmetry with two transmembrane proteins a and f3, both sequenced [124], three
bacteriochlorophyll a and either one or two carotenoid molecules per symmetric
unit [125, 126]. Nine bacteriochlorophyll molecules are distributed rather sparse-
ly composing the B800 ring close to the cytoplasmic surface of the membrane,
whereas 18 bacteriochlorophylls of the B850 ring on the periplasmic side are made
of densely packed dimeric units.

The absorption spectrum of the LH2 complex in the region of Q, transitions of
the bacteriochlorophylls at 77 K has two clear sharp distinct peaks [127] with max-
ima positioned at 801 nm (B800 band) and 867 nm (B850 band). The contribution
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Figure 17.2 Schematic structure of the LH2 aggregate. Turquoise — proteins, gold — bacteri-
ochlorophylls. There are a few caroteinoid chromophores as well. (a) Side view, (b) top view.

of the particular groups of pigments to producing this spectrum is defined rather
uniquely with respect to the ring structure. Recent femtosecond coherent exper-
iments reveal more details on the excitonic interactions in the LH2 and similar
LH3 [60, 61] aggregates. The experiments reveal the evidence of quantum mechan-
ical interference which represents a previously undescribed strategy for control of
excitonic dynamics as revealed by the phase map of quantum beating signals in the
two-dimensional signals of the LH2.

Since the first crystallographic structure of the LH2 complex of Rhodopseu-
domonas acidophila was published [125], there have been numerous studies per-
formed, often combining experiments with theoretical modeling, seeking to con-
nect structural properties with functions of the complex (see [24, 127, 128]). Several
microscopic models based on the X-ray structure have been suggested to reproduce
the absorption spectrum of the LH2 aggregate [129].

17.1.3
Photosystem I (PS-)

Photosynthetic complex photosystem I (PS-I) is a pigment—protein apparatus
shared by bacteria and plants that converts the photon into electrical energy [130].
It exists in trimeric and monomeric forms, but the trimeric species have the same
optical properties as monomers: in both the absorbed light at room temperature
has > 95% probability to induce charge separation [131]. This suggests that the
energy exchange between monomers is negligible and a single monomer can be
used to model the spectroscopy measurements.

A recently reported high resolution structure of a cyanobacteria Thermosyne-
chococcus elongatus monomer [132] revealed 96 bacteriochlorophylls, and 22 carot-
enoids embedded in the protein frame. The whole PS-I can be divided into two
parts (Figure 17.3): an outer nonsymmetric, 90 antenna bacteriochlorophyll array
surrounds a central six bacteriochlorophyll core, which is identified as the reaction
center, where charge separation takes place. The structure of the PS-I monomer
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Figure 17.3 Spatial distribution of the 96 bacteriochlorophylls in photosynthetic complex PS-I.
The reaction center can be identified in the center. The protein scaffold has been skipped.

(see Figure 17.3) is apparently optimized for the efficient energy conversion, as
demonstrated by experiments and supported by numerical simulations [133, 134].

The room temperature PS-I absorption spectrum consists of a broad (700-
645nm) main antenna absorption band and a shoulder to the red from 715
mn [130]. The lowest-energy band of the reaction center is at 700 nm. The “red”
absorption band which extends below the RC absorption is a unique feature of
the PS-I complex. While the PS-I complexes from different species have a very
similar main absorption band, they mostly differ in the red absorption region.
Features of charge transfer (CT) states [135] were attributed to a dimeric pattern
of bacteriochlorophylls responsible for this red shoulder in both Synechococcus and
Synechocystis.

Exciton dynamics in the PS-I show both coherent and incoherent components
which reflect the interplay of localized and delocalized excitons [136]. One- and
two-color photon echo peak-shift (3PEPS) measurements performed by Vaswani et
al. indicated strong excitonic couplings between pigments absorbing at different
energies, while the red chromophores show fast decay of the 3PEPS signal due to
strong coupling with the protein [137].

Microscopic exciton dynamics simulations for PS-I have been carried out right af-
ter high-resolution structural information became available [133, 136, 138, 139]. An
effective Frenkel exciton Hamiltonian has been constructed using semi-empirical
INDO/S electronic structure calculations combined with the experimental struc-
ture [139, 140]. Efficient numerical optimization algorithms have also been applied
to search for the transition energy and dipole orientation of each BChl [135, 141].
The resulting parameters provide a good fit to experimental absorption, circular
dichroism (CD), and time-resolved fluorescence spectra.
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17.1.4
Photosystem Il (PS-11)

Photosystem II (PS-II), which is the most abundant photosynthetic complex in
nature [142], is responsible for multiple phenomena, such as photon energy har-
vesting, delivery of excitons to the reaction center positioned in the middle, charge
separation, and most importantly, initiation of the water splitting chemistry. Its
high resolution structure shows two branches of pigments, D1 and D2, each made
up of two chlorophyll molecules and one pheophytin, and other pigments that are
separated from these six core pigments either energetically or spatially [143] (see
Figure 17.4). Six chromophores of the reaction center are tightly packed within a
~ 30° A3 volume and show strong resonant exciton interactions.

The PS-II aggregate allows direct study of the charge separation process because
the reaction center can be physically isolated from the surrounding antennae in
a solution. The reaction center is a small aggregate containing only eight chro-
mophores. However, different from the FMO, which is of similar size, the absorp-
tion spectrum of the PS-II reaction center is poorly featured [144]. It contains a
single broad band from 660 to 690 nm, which at low temperature slightly splits in-
to a double-peak structure. Because of this poor resolubility the simulation studies
of the aggregate become very valuable.

The Frenkel exciton model and the system-bath coupling have been parametrized
for PS-II by Raszewski et al. using a numerical optimization algorithm, which
yields good agreement with linear optical properties [145]. A more elaborate spec-
tral density of the system-bath coupling was used by Novoderezhkin et al. [146], by
employing 48 vibrational bath modes extracted from low-temperature fluorescence
line-narrowing data. Despite extensive studies of electron separation and transfer

Figure 17.4 (a) Full PS-1l complex of plants. Chromophores are displayed by gold pellets, twist-
ed tubes represent protein backbones. Pink — reaction center. (b) Chlorophylls (gold) and pheo-
phytins (pink) of the reaction center (twisted view compared to (a)).
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timescales, the primary charge separation site in PS-II RC is still not clearly identi-
fied: several radical pair (RP) evolution scenarios fit the existing experiments [147].

The absorption spectrum is not very sensitive to the CT states. This is to be
expected since the isolated CT states carry no oscillator strength from the ground
state. This selection rule is broken by mixing the CT with the Frenkel exciton states,
leading to a weak absorption of the CT state. However, for the same reason, CT
states are strongly coupled to the medium causing large broadening, which makes
them harder to resolve.

Recently, the experimental 2D spectra of the PS-II RC were recorded [148]. These
spectra showed rapid energy equilibration among the PS-II RC pigments and later
slow decay of the signal. The 2D studies provide a detailed picture of the excitation
frequency dependent spectral signatures of charge separation.

17.2
Simulations of 2D Spectroscopy of Photosynthetic Aggregates

Over the last five years a huge leap, fueled by the invention of two-dimensional
electronic spectroscopy, was achieved in understanding coherent and dissipatory
effects in the photosynthetic light harvesting pigment—protein antenna complexes
that reside inside specific membranes in bacteria and plants. As the main func-
tion of the peripheral chromophores is funneling of energy to the reaction center,
this process has been extensively probed by time-resolved two-dimensional opti-
cal spectra. In this section we present some modeling of two-dimensional spec-
troscopy in the photosynthetic aggregates described above. For calculations the
theory described in previous chapters is being used. Also notice that further on
we use the impulsive limit (unless separately indicated) so the interval of the re-
sponse function t, is equivalent to the time delay between optical pulses T. In
the two-dimensional plots we use color scale where blue peaks indicate the posi-
tive peak amplitude, while yellow represents the negative. Green color reflects zero
values.

17.2.1
Energy Relaxation in FMO Aggregate

Spectroscopic studies of light harvesting and subsequent energy conversion in
photosynthesis can track quantum dynamics happening at the microscopic lev-
el. The Q, band of FMO was described using the Hamiltonian of Aartsma [24,
149] as refined by Brixner et al. [117]. Atomic coordinates were taken from [114].
The electric transition dipoles were assumed to pass through the nitrogen b and
d atoms according to the crystallographic nomenclature. The monomer electric
dipole strength was 5.4 D [114]. The coordinates of the magnesium atoms located
at the center of BChl a molecules were used as the reference points of chromophore
coordinates when necessary.
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The commonly accepted model for the coupling to the environment is the as-
sumption that each chromophore experiences identical, however, uncorrelated
fluctuations. The semiclassical overdamped spectral density given by (8.105) is
then often used to represent the fluctuations of the chromophores. The bath re-
laxation time y ~! = 100 fs and the reorganization energy A = 55cm™! for each
bacteriochlorophyll then properly describe the homogeneous linewidth in the ab-
sorption spectrum. However, it should be noticed that these bath parameters are
not unique as the spectrum weakly depends on the fine structure of the overdamped
bath since the overall spectral density is a broad featureless function. This part of
the bath represents dynamical fluctuating environment. The static disorder can
be included explicitly on top of the fluctuations using the Monte Carlo sampling
and ensemble averaging. The typical disorder for FMO site energies is distributed
according to Gaussian shape (width is 20cm ™! as proposed by Brixner et al. [117]).
The orientational averaging is performed as described in Section 15.2.6. The ab-
sorption calculated using this procedure is presented in Figure 17.5. There we
clearly identify three low-energy peaks and one shoulder on the higher energy
side. While this shape is created by seven exciton states, some of them have small
transition dipoles and poorly contribute to the spectrum.

The two-dimensional rephasing spectrum was calculated by summing over all
possible Liouville space pathways. It is easy to check that for seven chromophore
molecules we have seven single exciton states and 7 x 6/2 = 21 double exciton
states. In that case we have 7 x 7 ground state bleach pathways, 7 x 6 stimu-
lated emission pathways that include only exciton coherences during t, interval,
7 x 7 stimulated emission pathways that include exciton populations and their en-
ergy relaxation during the same interval. Additionally, we have 7 x 6 x 21 induced
absorption pathways with coherences during #, and 7 x 7 x 21 induced absorp-
tion pathways with populations during T,. So, for the FMO aggregate we need to
sum up 2051 pathways (in general for N electronic two-level sites we will have
N(3N —1) + N*(N — 1)>(1 + 1/2(N — 1)) number of pathways). For the homoge-
neous line broadenings we use the cumulant expansion as given in Appendix A.10.

NN
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Figure 17.5 Simulated absorption spectrum of the FMO aggregate [150]. The vertical arrows
represent the excitonic energy levels and the length of the arrow is the oscillator strength | |?.
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The simulations thus require secular exciton transport rates that are calculated
using the secular Redfield equation (Section 11.4). It is used solely in the interval t,
where the population dynamics reduces to the master equation for diagonal density
matrix elements.

For simplicity we choose the regular laser setup where all laser polarizations are
parallel. Since the whole spectrum is orientationally averaged with respect to the
single molecule, wa can take xxxx polarization configuration.

The simulated 2D rephasing spectra at different delay times are shown in Fig-
ure 17.6. It shows a set of diagonal peaks that reflect main excitonic resonances.
These diagonal peaks are slightly elongated along the diagonal reflecting the inho-
mogeneity of the system. The green-to-yellow features above the diagonalat T, = 0
represent the induced absorption. As time T, evolves the blue crosspeaks below
the diagonal becomes visible; these reflect the energy relaxation from the higher-
energy diagonal peaks into the lower-energy crosspeaks. The 2D spectrum thus
reveals the energy relaxation pathways with high resolution. However, there are no
well resolved crosspeaks that would oscillate, so we do not observe excitonic co-
herent effects with this approach (see Section 16.5 on static and oscillatory peak
patterns).

The effects of coherent dynamics have drawn considerable interest in FMO since
experiments of Engel [118], Fleming [151], Scholes [152] and Kauffmann [153]
groups observed some coherent beats (up to 1ps) of various peaks in the two-
dimensional spectra. One reason behind these oscillations is the weak exciton
intra-band dephasing, what could keep coherences “alive”.

Long-range correlated chromophore transition energy fluctuations is one such
possible mechanism as suggested by Lee et al. [64]. Assuming that energy levels
of all chromophores fluctuate in-phase, the exciton wavefunction phases are not
affected by this motion; the entire exciton band energy is modulated together. This
effect can be easily described using the theory presented in previous chapters.

As the molecular transition energies are linearly coupled to the bath, all bath-
induced properties are determined by the following matrix of correlation functions
or spectral densities C)/ (w). This matrix describes how fluctuation of energy of the
molecule m is connected to that of the molecule n. The transformation of spectral
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Figure 17.6 Time evolution of the two-dimensional rephasing spectra of the FMO aggregate
simulated using xxxx pulse polarizations [150]. Red and green circles mark the crosspeaks
reflecting the energy relaxation.
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densities between the molecular and the exciton basis is then given by

Céieg,ezel(w) = ch/qin(w)cmmcj;eg C:ezcnel . (171)
mn

The common approach that has been described above is that the transition
energy fluctuations of all chromophores are uncorrelated. This case is given by
Cl' (w) = 0 mnCl/(w). The dynamical properties that are observed in the spectra of
excitons depend on fluctuations in the exciton basis set, where

C;:e;,ezel(w) = C;/((/U)Z Cm84c>1:163 C:’Lezcmel = 56483,82816;/((’0) N (172)
m

Eeses,erer 1S the exciton overlap matrix. Since in general &, .., is finite for all
combinations of exciton indices, we find that uncorrelated fluctuations contribute
to both exciton transport (via off-diagonal fluctuations, C7, ,,,) and pure dephasing
(via diagonal fluctuations, CJ, ,,). These cases have been discussed with respect to
relaxation in a harmonic oscillator in Chapter 8.

The opposite extreme case is when the transition energy fluctuations of all chro-
mophores are fully positively correlated. This case is given by C”,.,(0) = C/ ()
and in the exciton eigenstate basis the spectral density assumes the form

C;:e;,ezel(w) = 68463662816é/(w) . (17.3)
The correlated fluctuations of molecular transition energies thus lead to correlat-
ed diagonal fluctuations of exciton transition energies. Off-diagonal fluctuations of
excitons, which could lead to exciton transport, are absent and the population trans-
port vanishes. As the transport is observed, the case of fully correlated fluctuations
is thus not realistic in FMO aggregate.

Let us include these correlation effects in the simulation of two-dimensional
spectra [120] and let us label, using (i), the model which neglects all correlations
so that Cy,,(t) = 0 (m # n). As the intermediate case we can assume (model ii)
exponentially decaying inter-chromophore correlations

C,%(t) — e—|rm—rn|/lc(t) , (174)

where [ is the spatial correlation distance. We denote this case by the exponential
model. Let us also denote the highly asymmetic case (iii), denoted by a cut-off model
that makes a sharp cut-off with the distance, that is

ity = o (2 1) e, 175)

where 6 (x) is the step function: the correlation vanishes when the distance be-
tween chromophores is larger than the correlation distance .

The strength of the intermediate correlations was chosen as follows. The FMO
active region size (largest distance between central Mg atoms of chromophores in
FMO) is ~ 27 A, thus in the exponential model we take | = 30A. For the cut-off
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Model (i) Model (ii) Model (iii)

w3 (10%cm™1)

(M)

! | 1
122 124 126 128 122

|
12.4

|w1| (10%cm™1) |w1| (10%cm™1) |UJ1| (10%cm™1)

Figure 17.7 2D spectrum of FMO calculated for further examination of the time T, depen-

using the three models of correlated fluctua- dence. This is shown in Figure 17.8. Notice
tions for T, = 0 as indicated [120]. Regions that the diagonal disorder is not included in
Ato F (each 50 X 50cm™") were selected these calculations.

model we take | = 12 A that makes sites 3 and 4 correlated as well as 5 and 6
correlated.

How do the exciton dynamics in these correlated conditions show up in spec-
troscopic signals? The absorption spectrum weakly depends on the spatial correla-
tions so it is not considered. The single-exciton dynamics is more directly mapped
by the 2D rephasing spectra. On the off diagonal regions in the 2D spectra the
peaks belong to populations and coherences. At T, = 0 populations of all models
are identical, only spectral broadening along w; and w3 axes is affected by correla-
tions. So the 2D spectra shown in Figure 17.7 for the three fluctuation models at
T, = 0 are similar on the diagonal region, but show differences in the off-diagonal
area below the diagonal.

This dependence on correlations changes dramatically in the time-resolved 2D
spectra. We have selected six areas of the spectrum, which correspond to the most
prominent peaks in the 2D spectrum and their crosspeaks to monitor their vari-
ation with the population delay time T,. In Figure 17.8 diagonal peaks A, C and
E demonstrate that the population relaxation timescales depend on these corre-
lations. There is a clear difference between the three models in peaks A, and es-
pecially C. Population redistribution in the interval 200-1000 fs is much weaker
in the cut-off model for these excitons (1 and 2). The most notable difference is
the highly-oscillatory crosspeak dynamics for correlated fluctuation models. These
simulations thus show that spatial correlations of fluctuations dramatically reshape
the crosspeak region and the time-dependence of various crosspeaks in the 2D
rephasing spectra.

17.2.2
Energy Relaxation Pathways in PS-I

As described in Section 16.5 some general principles for the design of two-
dimensional rephasing spectra by controlling pulse polarizations can be devel-
oped. These have been applied to FMO photosynthetic aggregate in [150, 154]. The
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same strategy has been used to study exciton dynamics in a “big” photosynthetic
complexe such as PS-I [155]. Here, we briefly revisit this study. One special interest
in PS-1 is that it contains three sets of special chromophores. There are so-called
red chromophores, whose energies are lower than of the reaction center chro-
mophores; these are A2, A3, A4, A19, A20, A21, A31, A32, A38, A39, B6, B7, B11,
B31, B32 and B33 [132]. The other set in the center of the structure determines the
reaction center (S1-S6). The third set is the main antenna region that surrounds
the reaction center.

The exciton model parameters for the PS-I complex were taken as refined by
Vaitekonis et al. [135]. The coupling of the chromophores to the bath is included
using the model of spatially uncorrelated fluctuations. We are then left with the
spectral densities. However, now the bath spectral densities depend on the type of
the chromophore [141]:

Aw > w* )
4 _ - e o
Ch(w) =24 w? + A2 + §j 7 j.n 91‘3 exp( Qj) : (17.6)

The first overdamped Brownian oscillator mode with the coupling strength 1 =
16 cm™! and the relaxation rate 1 = 32 cm™! controls the homogeneous linewidth
of the spectra. The remaining, Ohmic, part of the spectral density determines the
population transport rates and was tuned by fitting the time resolved fluorescence.
The Ohmic frequencies (in cm_l) are: 2; = 10.5, 2, = 25, Q3 = 50, Q4 = 120
and Q5 = 350; for the red chromophores we use 71, = 0.0792, 1,, = 0.0792,
N3, = 0.24, 74, = 1.2, 5, = 0.096; for the remaining chromophores 7 ; ., =
0.024 forall j.

E]
&=
)
=
g
4
B
(=W
A ——— Model (i)
: | : | : | ———— Model (ii) U
\___M'—\ ' ' - - - = Model (iii)
F \._I.—"-"-I._._-—-I—-—-—-_I._._._; ...... I—._._._I ...... I ....... T
0 200 400 600 800 1000
Ts (fs)

Figure 17.8 Time dependent amplitudes of the A—F regions of Figure 17.7 for the three fluctua-
tion models [120].
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17.2 Simulations of 2D Spectroscopy of Photosynthetic Aggregates

The PS-I aggregate contains a lot of chromophores and the full cumulant
function expressions were reduced by approximating all spectral lineshapes to
Lorentzians with the predefined dephasing constant y: each Liouville space path-
way with pattern

exp(—iwst; —iwyty +iwqty) (17.7)
(lw,] > 0) was appended by exponential damping:
exp(—iwsts +iwit — y3t3 — Yoty — Y1), (17.8)

while for population-involving pathways (w, = 0) the secular Redfield equation
with respect to t; has been solved similar to Section 16.2.1. The damping constants
for all excitons y, have been calculated using the Redfield model (Section 11.4).
Additionally, the double-exciton states were represented in the one-exciton product
basis [105] to simplify parametrization of double-exciton dephasings. Uncorrelat-
ed static diagonal Gaussian fluctuations of all pigment transition energies with
90 cm™! variance were added by statistical sampling to account for the inhomoge-
neous spectral linewidth.

The exciton state energies ¢, and wavefunctions c,,, obtained by diagonalizing
the single-exciton block of the Hamiltonian matrix, describe the involvement of
different pigments in the spectroscopy regions. The single-exciton wavefunction
coefficients c,, denote how the eigenstate e projects into the nth chromophore.
The single-exciton states have been classified according to their participation in
certain structural patterns [155]. The excitons belonging to the red states, the re-
action center states, have been identified. There are four exciton states which link
the reaction center with the peripheral antenna: these have been denoted as link-
er states. They are expected to be responsible for exciton delivery to the RC. The
linker states have energies close to the lower energy edge of the bulk antenna band
(14 600—14 700 cm™!). In Figure 17.9 we show this assignment in real space. The

(b)

Figure 17.9 Exciton probability distribution of groups of exciton states shown in real space
(density of dots represents |, |?). (a) Red states, (b) RC and linker states, (c) delocalized an-
tenna states [155].
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Figure 17.10 Simulated absorption of the PS-I - red excitons, C — RC peak, A — bulk antenna
complex [155]; “inh” denotes full simulations lower-edge, L — linker states, D — delocalized
averaged over 1000 diagonal disorder config- states over most of the antenna, H — bulk an-
urations, “hom” — homogeneous model. R tenna higher-edge.

red states are mostly localized on few chromophores scattered throughout the PS-
I, the RC and linker states cover the reaction center and show long tails extending
to the edges of the antenna. Figure 17.9 shows that the delocalized antenna states
completely surround the RC and overlap with the tails of the linker states.

The absorption spectrum shown in Figure 17.10 can be clearly separated into
the antenna region between 14 500 and 15300 cm™! and the red absorption re-
gion 13700—14300cm™". The absorption is inhomogeneously broadened with
a limited structure. The six main peaks are marked by vertical lines. For bet-
ter peak assignment we also show the homogeneous spectra calculated without
inhomogeneous broadening and using constant small homogeneous 30cm™!
linewidth.

We can thus introduce six types of transitions: the red states (R) at 14000 cm ™1,
the RC transition (C) at 14300cm ™!, the linker transitions (L) at 14670 cm ™!,
the delocalized antenna region (D) at 14850 cm™!. The bulk antenna starts at
14500 cm™ !, which is the low-energy edge (A), up to the upper-energy edge (H) of
the bulk antenna at 15110cm ™! and covers A, L, D, and H features. The R, C, L,
D, and H states can be identified in the absorption.

Two-dimensional rephasing spectra show exciton correlations as crosspeaks in
2D correlation plots. Let us take one of the primary laser pulse polarization con-
figurations esese,eq = xxyy. In Figure 17.11 we display the rephasing 2D signal
at t; = 0. Its primary diagonally-elongated feature originates from single-exciton
contributions (bleaching and stimulated emission) associated with R, C, and over-
lapping L and D states as marked by dotted circles. Some weak broad off-diagonal
features extending from the diagonal can be observed. The diagonal line mimics
the absorption. The R peak is well-separated from the rest peaks whereas other
diagonal transitions strongly overlap. The C diagonal peak can be identified as an
extended shoulder of the antenna band. The strongest peak corresponds to the L
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Figure 17.11 (a) The homogeneous absorption spectrum. (b) xxyy tensor component of the
2D rephasing spectrum [155]. (c) Signal A(ws, t; = 1fs, w1). (d) Signal B(ws,t; = 0, w1). The
2D plots are normalized to their maximum.

region. However, off-diagonal regions around the bulk antenna bands are mostly
featureless.

Let us now employ the optimized pulse polarization configurations, as described
in Section 16.5. It has been shown that the A signal vanishes at £, = 0. At short
delay (¢, = 1 fs in simulations) it gives essentially the zero-time derivative of the
2D spectrum. In Figure 17.11 it shows mainly as two overlapping diagonal peaks,
which can be identified with the L and D features. A set of crosspeaks are observed:
D-L, L-C are well-resolved, while others may be related to H-L, H-R. Diagonal
features of the red states and of the reaction center are absent. Spectral features of
this signal indicate ultrafast exciton dynamics within the bulk antenna and demon-
strate that the delocalized states are very active at short times. Strong L-C features
on both sides of the diagonal show that the excitons reach the RC at very short
times.

The A signal in Figure 17.11 contributes to very short t, delays right after the
excitation. We find that the exciton dynamics is very significant shaping the spec-
trum. Let us now consider the dynamical properties at later times. The complete t,
evolution of the elementary tensor component xxyy is depicted in Figure 17.12.
Exciton equilibration in the bulk antenna region within 1 ps is seen as change of
the 2D pattern around (w3, |w1]) = (14750, 14750) cm™!. The population is sub-
sequently trapped by the red states within 5 ps. This signal shows an extended
crosspeak lineshape at w3 = 14000 cm ™!, close to the red state exciton energy in-
dicating that the red states act as the energy sink as the reaction center is not active
(charge separation is not included in the model).

However, the density matrix coherences are hindered in the xxyy configura-
tion. The coherent evolution can be monitored by the B(w3, t;, @1) spectrum. The
spectrum B at £, = 0 as shown in Figure 17.11 (and similarly at £, = 50fs in
Figure 17.13) mostly reveals the bulk antenna region. The pattern has a very strong
diagonally-elongated peak which covers L and D states. Weaker C-L crosspeaks in-
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Figure 17.12 Variation of the 2D rephasing spectrum with t; as indicated [155]. The 2D plots
are normalized to their maximum. Signals are averaged over 500 diagonal disorder configura-
tions.

dicate strong correlation with the reaction center. These features show that strong
excitonic correlations are mostly active within the linker and the delocalized anten-
na states and they extend to the RC. Subsequent evolution with ¢, in Figure 17.13
shows dynamics of various crosspeaks, including well-resolved L-C and D-L. 100-
200 fs period oscillations cause the peak sign alternations. Since this signal probes
exciton coherences, it naturally decays with the coherence decay timescale: its am-
plitude drops by a factor of 10 between 0 and ~ 150fs, and by a factor of 100 at
300 fs. The red states do not contribute to this signal, whereas the RC shows strong
crosspeaks through the linker states.

These simulations indicate that the reaction center is clearly visible in the coher-
ent signals and is not masked by the bulk antenna contributions. The predicted
RC-related crosspeaks demonstrate a high degree of organization of the PS-I com-
plex: while the RC is spatially separated from the antenna, the linker exciton states
participating in the RC penetrate into the outer antenna, making exciton transport
to the antenna very robust. This provides RC signatures in 2D signals. Since the
coherences decay within 150 fs, only exciton populations determine the spectra in
Figure 17.12 at later delay time. Hence, the separate analysis of the C signal as
defined in Section 16.5 is not necessary.
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Figure 17.13 B(ws, t2, @1) spectrum which targets exciton coherence dynamics [155].

17.2.3
Quantum Transport in PS-1l Reaction Center

The secular energy relaxation picture described in previous subsections describes
purely classical energy transfer. This is because in the secular description the quan-
tum coherences of the density matrix in the off-diagonal areas are not mixed with
the rate equation of classical populations — the density matrix diagonal elements.
The density matrix diagonal elements thus grow or decay monotonously. The co-
herences display oscillatory damped motion. The full Redfield equation, however,
mixes all these dynamics as was described in Section 11.10.

Whether quantum effects, stemming from entanglement of chromophores, per-
sist in the energy transport at room temperature, despite the rapid decoherence
effects caused by environment fluctuations in photosynthetic aggregates may be
questioned [79]. Let us study the photosynthetic reaction center of the photosystem
IT that is relatively small system but has strong couplings within. Let us consider
how quantum transport may be observed by two-dimensional coherent rephasing
spectroscopy.

We focus on the reaction center (RC) of the photosystem II (PS-II). Its core
consists of two, D1 and D2, branches of pigments: the special pair, Pp; and Ppy,
accessory Chlp; and Chlp,, and pheophytins Pheop; and Pheop, (shown in Fig-
ure 17.14a). These together with two additional pigments Chlzp; and Chlzp,
(which are further away) form the primary excitonic system [145, 146, 156]. For
simplicity we further include only the central four chlorophyll pigments, Pp;, Pp;
and Accp;, Accp, which are closely packed in the RC core.
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Pheop; Pheopo

Absorption (a.u)

L L L L
14.4 14.6 14.8 15.0 15.2 15.4

(b) w (103cm71)

Figure 17.14 (a) Structure of the RC part of PS-I's aggregate. Only the core is shown. Blue
dashed lines indicate chlorophylls. (b) Absorption spectrum of the selected region using clas-
sical transport model (dashed line) and the quantum transport model (solid line).

The surrounding proteins cause decoherence and energy relaxation through fluc-
tuating transition energies of pigments which are characterized by the multimode
spectral density similar to the PS-I aggregate described in the previous section. En-
ergy relaxation and transport are usually described by coupling the exciton system
to a phonon bath and deriving equations of motion for the reduced exciton density
matrix p. The Redfield equation for the density matrix reads (see Section 11.2)

g
puv == [Hs.p]  + 2 Kancates (179)
[

The first term represents the free exciton system, and the tetradic relaxation super-
operator K represents dephasing and transport rates. A drawback of this approach
is that it was derived using the second order theory and thus it only works in a lim-
ited parameter regime. It may yield unphysical density matrix: populations may
become negative or diverge [157]. Additional secular approximation stabilizes the
relaxation dynamics. K is then reduced to a population block K., ,.,, that yields a
well-behaving classical master equation for populations. Dephasing rates K, ., ¢;e,
erase quantum coherences over the delay time. This level of theory, which have
been used in previous subsections, should be understood as the classical transport
(CT) regime [79].

An alternative Lindblad equation approach has been described in Section 11.7,
where the relaxation superoperator is given by:

A AL A

Kp:ZLapLL—EpLLLa—ELLLap. (17.10)
a

Here L, is a set of system operators which represent the coupling of the exciton
system to the environment. Since the Lindblad equation is not limited to the secular
approximation, it can couple populations and coherences in a balanced way so that
the simulated density matrix dynamics is physically reasonable. As the populations
become entangled with the quantum coherences, this transport regime is denoted
as the quantum transport (QT) [79].
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The heuristic approach to parametrize the Lindblad equation can be acceptable,
where for excitons the Lindblad operators are defined using

Lo=> u%,BlB,. (17.11)
mn

The matrix elements u%, are some complex numbers. Now the matrix Z,, u/n’
>k a J— 3k . . . .
o Wil = (U}, wy) contains the complete information required to
construct the relaxation superoperator.
In the spectroscopy simulations we are dealing with the eigenstate basis so we

have to transform the correlation matrix

® %
Zews,ezel = Z Zmn,klcme4cng3ckgzclel . (17.12)

mnkl

In the secular approximation, only autocorrelations are retained. Then Z,, ., =
Ko is the population relaxation rate from state e’ to state e and Z. . =
2|Kegegl — | Kee,ce| is twice the pure dephasing of the eg coherence. These can be
calculated by using a microscopic bath model from the predefined spectral density
using either Redfield and modified Redfield, or Forster theory. The other elements
of Z matrix need additional assumptions. The general statistics of the correlation
coefficients suggests

ZB463,6261 =V ZE4B3,8483 Zezel,ezel COS((p34e;,ezel) , (1713)

where the cosine function can be an arbitrary number between —1 and 1. The
cosines can be related to the exciton spatial overlap factors &, = Y, [Cmel|Cmer]-
Hence, only Lindblad operators involving overlapping excitons will be correlated.
In a simple model one can calculate three products of overlap factors, &, - &,
Eever  Eesers Eeer - Seseyr and set cOS(Peyese,¢,) = 1 if the largest product is greater
than a cutoff parameter 0 < 7 < 1. Otherwise coS(@e,e;,e0¢;) = 0. The simula-
tion methods and parameters for calculating the entire relaxation superoperator
are then calculated as described in Section 11.7.

The two-dimensional rephasing spectra using QT and CT simulations for short
(0ps) and at long (10ps) t, delay are compared in Figure 17.15. The signal has
two main diagonal peaks D1 and D2 (blue-negative) corresponding to the excitons
e1 and e,, whose strength depends on their populations pe,., and p.,.,. The main
crosspeak Cl1 is related to population transfer from e, to e;. The weaker diagonal
peak D3 represents the e; exciton. The other (yellow — positive) crosspeaks C4-C6
reflect double-exciton resonances. At T, = 10 ps delay, C1 becomes the strongest
signifying the exciton transfer. The overall spectral pattern of QT and CT is similar
but details (some peaks, spectral linewidths and peak amplitudes) are different.

The QT and CT dynamics is markedly different in the time evolution of diagonal
peaks (D1, D2) and crosspeaks (C1, C2, C3) with t,, as depicted in Figure 17.15b.
QT shows strong oscillations of D1 and D2 lasting for over 600 fs. These reflect
the non equilibrium populations and are correlated to the beating of C2 and C1.
The CT simulations also show rapidly decaying (~ 300 fs) oscillations of C1 and
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Figure 17.15 (a) 2D spectrum of the RC with (QT) and without (CT) quantum transport in the
initial moment (T, = 0) and at the equilibrium in the excited state (T, = 10ps); (b) time
evolution of diagonal peaks and crosspeaks using CT and QT models.

C2 (these are related to coherences showing quantum beats), the population peaks
D1 and D2 are nonoscillatory.

Our simulations thus reveal that population relaxation acquires oscillatory com-
ponents due to its coupling with coherence oscillations which are displayed in the
2D spectrum. The corresponding diagonal peaks do not show oscillations in CT.
Oscillatory diagonal peaks are thus a clear signature of QT. This conclusion holds
for the rephasing 2D signal calculated here. The quantum beats of the combined
rephasing and non rephasing signals or of off-diagonal peaks in [62, 118] do not
necessarily imply QT since non rephasing 2D diagonal peaks include stimulated
emission coherences which oscillate even in the CT case.
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Single Molecule Spectroscopy

A new spectroscopic method based on the detection of the spectroscopic signals
of single molecules or multichromophore systems bypasses the ambiguities con-
cerning the ensemble averaging and provides direct experimental information for
individual molecules or molecular complexes. Such a spectroscopic method allows
the researchers to resolve effects caused by decoherence of excitation with higher
resolution and also to trace the spectral changes due to environment fluctuations.
The main purpose of this chapter is to present the theoretical basis suitable for the
analysis of observations obtained using the single molecular spectroscopy.

18.1
Historical Overview

Rapid development of new spectroscopic equipment in the mid-1980s has led to the
emerging of novel advanced techniques which have helped to uncover many inter-
esting spectroscopic properties of various chemical compounds. In 1989, the ab-
sorption spectra of single molecules were measured for the first time [158], which
has marked the dawn of an era of single-molecule spectroscopy (SMS). Since then,
SMS has proven to be a valuable tool to inspect the subtle properties of individual
molecules not obscured by the ensemble average. Indeed, traditional spectroscop-
ic methods allow one to measure only some statistically averaged quantities, de-
scribing the whole ensemble as the observable system. In this way, the probability
distribution of these quantities, their dynamic and/or static variations caused by
heterogeneity of the system, as well as fundamental interactions between distinct
molecules and their environment remain undetermined. The ability of SMS mea-
surements to reveal such uncertainties and, therefore, to provide much more new
information has resulted in growing interest in applying SMS techniques not only
to simple fluorophores such as dye molecules [159, 160] or colloidal semiconductor
quantum dots (QDs) [161], but also to complex biophysical systems, such as green
fluorescent proteins [162] or pigment—protein light-harvesting complexes (LHCs)
from plants [163-165] and photosynthetic bacteria [166-170]. In the latter applica-
tions, SMS has been successfully applied in the labeling experiments, when simple
fluorophores are attached to complex macromolecules and provide some valuable
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information on molecular interactions, reaction kinetics, conformational dynamics
or molecular motion [171, 172].

SMS measurements have also revealed several unexpected properties of single-
molecule systems, for example, spectral diffusion, the phenomenon that occurs
when the absorption frequencies of a molecule change due to some variations of its
local surroundings. Another intriguing effect discovered by the SMS is the so-called
fluorescence intermittency, or blinking. In virtually all fluorescing systems stud-
ied to date at the single-molecule level the measured fluorescence intensity fluctu-
ates rapidly and abruptly despite continuous illumination [173, 174]. The sudden
and uncorrelated fluctuations occur mostly between two well-defined strongly- and
non- or weakly-emitting levels (the corresponding states are commonly referred to
as on and off states, respectively) and usually serve as a simple signature of single
emitters. However, such unpredictable behavior limits the application of simple
fluorophores as fluorescent probes; therefore, much effort has been made in order
to understand the underlying mechanisms responsible for fluorescence blinking
and to find out how it could be controlled or even eliminated.

In the early studies of fluorescence blinking of single molecules in molecular
crystals [175] it was found that the probability of the times the system spent in the
on and off states (on- and off-times) to a great extent can be described by single-
exponential distribution, as predicted by the quantum jump theory of transitions
between singlet and metastable triplet states [176]. Later, the blinking effect with
much longer off-times that could not arise due to intersystem crossing was discov-
ered for various fluorescing systems [174]. In most of these, off-times vary across
almost all experimentally accessible time scales, typically spanning over 4 orders of
magnitude or even from microseconds to several hours in the case of semiconduct-
ing QDs [177]. Moreover, in almost all these very varied systems the dwell times
of both on and off states are not exponentially distributed, but follow an inverse
power-law or its simple modifications, with the exponent m typically lying between
1 and 2 [174]. Despite much research in this field, the explanation for probably one
of the most intriguing riddles of SMS — why such diverse systems of various com-
plexity exhibit very similar blinking statistics leading to the absence of typical time
scale and even to the weak ergodicity breaking [176] — is still under discussion.

In order to resolve (at least partially) this problem, several models describing flu-
orescence blinking in semiconducting QDs have been proposed so far. In these
models the dark state of QD is associated with the photo-ejection of an electron.
According to the so-called trap models [173, 178, 179], it is assumed that the elec-
tron can tunnel through a barrier to a trap located nearby, and the dark period
ends when the trapped electron hops back. Alternatively, power-law blinking statis-
tics naturally arise if one considers one- or two-dimension random walk involving
a first-passage problem. In 2005, Tang and Marcus [180] suggested a diffusion-
controlled electron-transfer model, where a light-induced one-dimensional diffu-
sion in energy space is considered. Additionally, more models of power-law statis-
tics have been proposed, but none of the existing theories can explain all the exper-
imentally observed issues of the blinking phenomenon. Moreover, no or very limit-
ed theoretical background regarding fluorescence blinking in other systems exists.
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Recently, new data on fluorescence intermittency in the single complexes of major
light-harvesting complexes (LHCII) of green plants have been collected [164, 165].
It was found that these complex biomolecular structures exhibit similar blinking
behavior as structurally much simpler fluorescent dyes or QDs. Furthermore, in
contrast to the dyes, in vivo LHCII particles, being subunits of large photosystem
11, perform important physiological functions of very efficient light harvesting as
well as excitation energy transfer and regulation via nonphotochemical quench-
ing (NPQ). Thus, the fluorescence blinking of the single pigment—protein complex
evidently represents the (quantum) electronic transition of the emitting pigment
reflecting its position in the potential configuration of the protein. The latter evi-
dently behaves according to the classical physics laws. So the whole fluorescence
blinking phenomenon tightly relates to the complex quantum/classical dynamics.

18.2
How Photosynthetic Proteins Switch

It is generally accepted that proteins are mobile entities, undergoing a variety of
structural deformations on different time scales. They move in their conforma-
tional landscape probing different conformational sub-states [181]. The simplest
model demonstrating the switching ability via the fluorescence intermittency in
LHCII complexes [165] assumes that the LHCII trimer can be found in two states
depending on the protein structural arrangement: either a bright (on) state, when
the fluorescence signal from the irradiated LHCII trimer is clearly detected, or a
dark (off) state, when the fluorescence is almost switched off. If one projects the
manifold of all rapid molecular vibrations in the LHCII onto a single reaction co-
ordinate x, then the on and off states of the LHCII trimer mentioned above would
correspond to two minima on the configurational potential energy surface of the
protein [182]. Possible transitions between these two states can be attributed to an-
other generalized coordinate y reflecting some specific slow protein conformation-
al change which disturbs the energy balance between different pigments involved
in the light-harvesting and quenching process. To characterize the transition rates
between the two (on and off) states, the potential energy surfaces attributed to each
of them can be separately defined as independent potential wells (see Figure 18.1),
which in the harmonic approximation are given by:

1 1
Ui(x,y) = 511962 + 571)’2 ,
1 1
Us(x,y) = Eiz(x — x0)* + EVZ(Y —yo)’+ o, (18.1)

where indices “1” and “2” denote on and off states, respectively; A; and y; determine
the reorganization energies in the ith potential along the coordinates x and y, re-
spectively; xo and y, indicate the equilibrium position of the second potential; and
Uy is the vertical difference between the potential minima. According to this de-
scription, the system resides mainly in the vicinity of the U; potential well when
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the y values are small, and the transition into the minimum of the U, potential
well occurs by increasing the y value (when y, > 0). Since the LHCII trimer can
be found only in one of these two states at any given time, a random walk in the
phase space of the coordinates x and y will lead to a random switching between the
on and off states. The dynamics of these transitions should then resemble the exper-
imentally observed dynamics of fluorescence intermittency [164, 165]. Changes in
the environmental conditions might induce some variation of the potential sur-
face, which will result in a shift of the dynamic equilibrium to either on or off
state.

We can safely assume that transitions between the on and off potential surfaces
occur strictly vertically, meaning that the coordinates x and y do not change during
the transition, as shown in Figure 18.1. The rate of the downward transition from
the point A on the on potential surface to the point B with the same coordinates on
the off potential surface is equal to k;. Similarly, the rate of the downward transition
C — D from the off to the on potential surface is denoted as k;. In addition,
both relaxation rates should contain the factor exp(—a|A U|/(hwy)) reflecting the
so-called energy gap law [45]. Here wj is the dominant frequency responsible for
the transitions between the points on the energy surfaces under consideration,
and a is some function, weakly (logarithmically) dependent on the potential energy
difference |A U| between those points, so that we can treat it as some constant
parameter (¢ = 1 -+ 3). The ratio of the upward and downward transition rates
is defined by the detailed balance relationship via the corresponding Boltzmann
factor: kEup) [ ki = exp(—=|AU|/(kgT)), where kg is the Boltzmann constant and T
denotes the temperature.

Up

Potential energy U

Yo

Figure 18.1 Potential surfaces of the on and off states in the phase space of the x and y coordi-
nates. ki and k; denote the relaxation rates of the on — off and off — on transitions, respective-

ly.

I

—F

95U8917 SUOWILLIOD SAITeRID 3|qeal|dde sy Ag peulenof a1e ss ol YO ‘8sN JO SajnJ 4oy Akeiqi8uluO AS]1M UO (SUOTIPUOD-pUe-SWB)W0o" A8 | 1M Ale.d 1[pu1 Uo//SdNy) SUONIPUOD Pue SWd | 841 89S *[Z0z//0/7T] Uo Arlgiauliuo oI ‘AISIeAluN UWION BUIYD LINoS Ag /10p/wod A3 i Alelgjeuljuoy/:sdny wolj pspeojumod



Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —
Chap. c18 — 2013/6/3 — page 407 — le-tex

o P

18.2 How Photosynthetic Proteins Switch | 407

The time-dependent probability density p;(x, y, t) for finding the system at the
point with coordinates x and y at time ¢, when the system is either in the on (i = 1)
or off (i = 2) potential surface, obeys the following Fokker—Planck [183, 184]

api

T [DixLy + DiyLy — kiHi(x, y)] pi(x, v, 1), (18.2)

where D;, and D;, are the diffusion coefficients in the ith potential along the x
and y directions, respectively; £, and £, are the corresponding diffusion opera-

tors:
9? 1 9 dUi(x,y)
Lopi(x,y,t) =| 7+ —=———F—— | pi(x, v, 1),
2Pi(%, ¥, t) [azz+kBTaz 92 }pl(xy )
i=12; z=x,y; (18.3)
and
_ AUl U1—Up
Hi(x,y)=e “Foo ~min{1,e BT { ,
_ AUl U=
Hy(x,y)=e “Foo -min{l,e BT { . (18.4)

Assuming that the diffusion along the x coordinate is much faster than along
the y coordinate, the terms determining fast dynamics can be adiabatically elim-
inated from (18.2). In this case the x-dependence of the probability densities ap-
proaches the stationary (Gaussian) distribution exponentially fast, thus integration
of (18.2) yields

Ipi(y. ) _ 9

Ll = / dxpi = (DiyCy — ks (P)Bi(1 1) (18.5)

11 _;hxz

Kki(y) = ki anBdexe ZTHT Hy(x,y), (18.6)
A — Ay (x—x0)?

k() = k2 anBT/ dwe Ha(x,y) - (18.7)

The initial conditions of (18.5) can be chosen as follows. First we define the sta-
tionary solution ,555” of (18.5) when transition to the off state is inactive. Then, we
multiply the obtained steady-state solution (the Gaussian distribution) by the ef-
fective rate k1 (y) given by (18.6). This function determines the initial distribution
of the population of the off state. Similarly, the initial probability density for the
population of the on state is given by the product [)&St) (y)x2(y)- It is noteworthy that
after substituting expressions for H;(x, y) (see (18.4)) and normalizing, both initial
distributions coincide:

_ I AU
pily, t = 0) o 5 (p)ii(y) o¢ /dx exp (—a|h—|)
o

X min (exp (—%) , €Xp (—%)) . (18.8)
B B

where
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Table 18.1 Fitted model parameters.

Model Value Model Value
parameter pHé6 pH38 parameter pH®6 pH38
A=A2/M 0.3 0.2 kit 190ms  430ms
Yy =y2/y1 0.68  0.72 ky 3.6ms  4.8ms

xoy/A1/(ks T) 1.0 14 (Dyyi/(ksT)™' 245 3.85s
Yo/vi/(keT) 859 857  (Dyyy1/(ksT)) ™" 1s 1.4s
Uo/(kg T) 0.5 1.5 hawo/(aksT) 0.4 1.0

A more detailed numerical analysis reveals that (18.8) defines a very sharp dis-
tribution with the maximum located near the intersection point y'® of the one-
dimensional functions Uj(x = 0, y) and U,(x = xo, y), so that it might be well
approximated as d(y — y@).

Solutions of (18.5) allow us to determine the survival probabilities on the on and
off potential surfaces, S;(t), by integrating p;(y, t) over the y coordinate:

50 = [ vt (189)

Finally, the quantity corresponding to the experimentally collected blinking statis-

tics [165] determining the probability P;(t) that a transition from one state to an-

other occurs within the time interval (t; t + dt), is defined as
Pi(t) = —di"t(t) . i=1,2.

The presented model contains several parameters, which will be used for fit-
ting the experimental data. Upon introducing relative representations of the coor-
dinates determining both potential surfaces, five of these characterize the on and
off potential surfaces (1 = A,/41, ¥ = y2/y1, %0, yo and Up), while the other three
determine the dynamics of the transitions between the on and off states (kq, k, and
o). All these parameters were varied while fitting the experimental data of blink-
ing statistics at various pH values [165]. We note that the diffusion coefficients D;,,
only determine the time scale of the protein conformational changes, so they do
not change the shape of the P;(t) distributions on the logarithmic scale but on-
ly shift them along the time and probability density axes. From the magnitude of
those shifts the diffusion coefficients were determined. The fitting results for data
collected under two particular conditions of the environment, namely at pH 6 and
pH 8, are demonstrated in Figure 18.2, and the corresponding fitting parameters
are presented in Table 18.1. The latter pH value corresponds to natural physiolog-
ical conditions ensuring strong fluorescence of isolated trimers, while the former
is similar to the one usually observed under NPQ conditions.

It is clear that a description of all the possible conformational changes of the
LHCII trimer using only two generalized coordinates and simple harmonic poten-
tial wells cannot reveal all the subtle details of the dynamic spectral properties of

(18.10)

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Chap. c18 — 2013/6/3 — page 409 — le-tex

18.2 How Photosynthetic Proteins Switch

—
[e)
o

U 1074
= 10 1074
R 101
£107 13
& E 1071 4
& 1077 L,
> E 1077 3
é 10_5.5 \ 1073 ]
S, qlon) \ ;
2 107" q——pH3 e 10714
g _3---pHs6 ]
A~ 10_ R L I L L B 0_ U I LA B
0.01 0.1 1 10 001 0.1 1 10
(a) Dwell time (s) (b) Dwell time (s)

Figure 18.2 Experimentally obtained (circles) and simulated (lines) probability densities of the
dwell times in bright (a) and dark (b) states for two different acidity levels of the environment.
For visual clarity, the upper data corresponding to pH & were multiplied by a factor of 100.

such a photosynthetic pigment protein. Nevertheless, this simplified model with
properly chosen parameters can very well reproduce the experimentally observed
fluorescence intermittency on the whole experimentally accessible time-scale, as
demonstrated in Figure 18.2. From the obtained model parameters (Table 18.1)
several interesting properties of the potential surfaces of the on and off states can
be outlined. First of all, the potential energy surface of the off state is less steep than
that of the on state, and its minimum is located slightly above the minimum of the
on state. Furthermore, a clear dependence of the parameters on the environmental
acidity is revealed. Under more adverse environmental conditions at a low pH level
the potential surfaces of both on and off states exhibit notable deformations. The
potential well of the off state becomes slightly steeper (along the fast x coordinate),
and its minimum approaches the minimum of the on state, which results in an
increased probability for the system to switch to the dark, nonfluorescing state.

While analyzing the model parameters that determine the transitions between
the on and off states, we first notice that the energy Aw, of the dominating phonon
mode taking part in the transitions is of the order of the thermal energy kg T.
The lower pH level determines a higher protonation state of the system, which
results in the increased effective mass of the vibrating molecules and, therefore,
an almost twofold drop of the frequency wy of their vibrations. The relatively high
value of hw, can explain the flattening of the calculated probability densities at
longer dwell times (Figure 18.2), a somewhat different behavior compared to other
existing models dealing with the power-law blinking statistics [173, 183].

An interesting outcome is the notable difference between the diffusion and tran-
sition rates in the on and off states. The rate of the transition from on to off state
is ~ 50—90 times slower than that of the backward transition. Such a high ratio
of the transition rates in opposite directions reveals why the population of the off
states decreases in time much faster than that of the on states. After the transition
to the dark state the system usually remains in this state for a very short time so
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that the measured fluorescence intermittency should resemble very short blinking
events, rather than short flashes.

A somewhat similar fluorescence blinking behavior was observed in many other
fluorescing complexes, ranging from simple single dye molecules [159, 160, 185]
and semiconductor quantum dots [161, 173, 178, 179, 186, 187], to the diverse range
of more complex fluorescing systems [162, 163, 188]. If the exponential switching
behavior of single dye molecules observed on shorter time scales can be attributed
to the quantum transitions between singlet and metastable triplet states [175, 176],
the power-law blinking statistics observed in various other systems still does not
have a proper explanation. For disordered biological systems the power-law expo-
nents strongly depend on the environmental conditions. The blinking effect ob-
served to take place in single LHCIIs seems to be even more outstanding if one
takes into account the complex internal structure of these units containing more
than 40 distinct pigments, each with its own spectral properties. If the fluores-
cence intermittency were attributed to individual uncoupled chromophores, due
to the stochastic nature of the blinking phenomenon, the averaged signal from all
pigments would almost completely lack any noticeable blinking events. In contrast,
experimental observations of fluorescence blinking support the significance of the
protein scaffold binding all the pigments together and enforcing them to act as a
whole quantum unit. It seems that during evolution the plants ‘have learned’ to
take advantage of the blinking of simple emitters and implemented it at a slight-
ly more macroscopic level, when the protein’s motion and deformation influence
the inter-pigment couplings, molecular fluctuations, and possible pathways for the
excitation energy transfer. As a result, the switching behavior of the LHCIIs has
become their intrinsic property governed by the lability and adaptability of the pro-
tein scaffold. The latter property not only determines the system evolution, but also
manifests itself as system adaptation to the varying environmental conditions, such
as acidity, illumination level, and so on.

Such switching ability between bright and dark states implies that the mecha-
nisms responsible for NPQ should be closely related to the phenomenon of fluo-
rescence intermittency.

18.3
Dichotomous Exciton Model

The fluorescence spectral changes and intensity blinking behavior have also been
observed by the SMS of the peripheral light-harvesting complexes LH2 from photo-
synthetic bacteria [166-168]. To determine possible structural changes of the LH2
complex and the time scale of these changes the experimentally measured spectral
profile must also be associated with the microscopic structural parameters. Since
the B850 antenna ring is arranged by excitonically coupled pigment molecules (bac-
teriochlorophylls), the static disorder of pigment site energies, and the coupling of
the pigment electronic excitations to phonons, which gives rise to the so-called dy-
namic disorder, have to be taken into account explicitly. The fluorescence spectral
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18.3 Dichotomous Exciton Model

profile of the B850 is known to be sensitive to the structural fluctuations (stat-
ic disorder) and to the dynamic disorder determined by the electronic excitation
interaction with the vibrational modes of the molecules and protein scaffold (see
Chapter 5). Therefore, the experimentally observable differences of the SM spectral
line shape and the peak wavelength should be associated with different realizations
of the static disorder. Transitions between different spectral states occur due to the
changes of the static disorder, which in their turn are induced by the conforma-
tional changes of the protein surrounding of the pigment molecules. The latter
occur either spontaneously or are light-induced due to the nonradiative relaxation
of the absorbed excitation energy. The simplest possible disorder model in which
each pigment can switch between the two states of different electronic excitation
energy already demonstrates the spectral switching behavior of the fluorescence
spectra [169, 170]. Because of this assumption let us consider the B850 band by
describing the exciton energy spectrum using the following Hamiltonian [98]:

H

N N
S (e an) I+ Y Viwlm) (] + Hy, (18.11)

n=1 n,m=1

where ¢, = &) + qn is the excitation energy of the nth pigment molecule modu-
lated by the collective coordinate of the thermal bath g, |n) and (n| are the ket and
bra vectors for the excitation to be localized on the nth molecule in the aggregate,
respectively. The matrix element V,,,, denotes the resonance interaction between
the nth and the mth pigment molecules. Hyj, denotes the phonon bath composed
of the intra-molecular and protein vibrations.

Because of slow bath degrees of freedom, ¢, the excitation energies ¢, are
stochastic parameters, characterized by their distribution function. For the dichoto-
mous model it consists of two parts: the Gaussian disorder and the dichotomous
protein conformational disorder. We denote the Gaussian disorder as the inho-
mogeneous part. It is characterized by the inhomogeneous distribution function
(IDF), which can be usually represented as a Gaussian function with a mean val-
ue &y (the subscript h denotes the helix binding the pigment, h = «, ) with the
full-width at half-maximum 7P

in 41n(2) (e"h — ¢ 2

slow)

The dichotomous exciton model assumes that protein fluctuations introduce two
conformational states for each BChl pigment (see Figure 18.3). These states are
characterized by their population probabilities, p;, j = 1,2. The two conforma-
tional states shift the mean excitation energies of a pigment by +AE for j = 2 or
—AE for j = 1. Thus, the total electronic transition energy of each bacteriochloro-
phyll molecule can be expressed as

e, =M+ AE, (18.13)

where the case of plus corresponds to dichotomous state j = 2 and the case of
minusto j = 1.
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18 Single Molecule Spectroscopy
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Figure 18.3 Potential surfaces in the ground- postulated that each BChl molecule can reside
and excited-states of a BChl molecule from in either of the two conformational states,
the B850 ring of the LH2 complex. The poten-  denoted “1” and “2” and the transition rates
tials are plotted against the conformational between these two states as indicated as kq
coordinate of the protein surrounding. It is and ky, respectively.

The remaining bath degrees of freedom constitute fast fluctuations, g, which
are treated perturbatively. These fluctuations are characterized by a spectral density,
which for the model of uncorrelated fluctuation for different molecules is defined
as

Cllo) = 5 7dt exp(iot) ([ 4" (1), 47 0) ) (18.14)

while the bath average is taken with respect to the equilibrium phonon Hamiltoni-
an Hpp.

Transition between the two conformational states occurs due to the thermally in-
duced potential energy barrier crossing, or it can also be light-induced as a result of
dissipation into the surrounding protein scaffold. In the first case, the protein tem-
perature is that of the ambient whereas in the case of the light-induced changes the
protein might be locally heated and/or the characteristic energy barrier separating
the potential energy minima can differ from that of the spontaneous transition.
Therefore, this rate is sensitive to the temperature and is linearly dependent on the
small changes of temperature. In a typical SMS experiment [168] the LH2 com-
plex is excited approximately 107 times per second. More than 90% of the absorbed
photons are dissipated in the protein scaffold and further to the surrounding of
the complex. The calculated temperature change of the complex in such a dynamic
equilibrium is negligible (approximately 10™* for 6 uW of the excitation power),
which is reached in about 60 ps. If the complex is adiabatically isolated, the ex-
pected temperature increase is ~ 2 K. Such a temperature increase would not be
associated with a noticeable enhancement of the probability to overcome the energy
barrier. However, the probability of the transition might be enhanced at early times
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18.3 Dichotomous Exciton Model

after the internal conversion before the thermalization is reached, that is, when
the pigment—protein is heated locally. In this case the frequency of conformational
transitions should be linearly dependent on the excitation intensity as was observed
experimentally. The thermally induced barrier crossing mechanism is also consis-
tent with the observed fast jumps between long-lasting spectrally distinguishable
states. Spontaneous transitions are also taking place as demonstrated experimen-
tally. Thus, the total rate of the transition can be defined phenomenologically as:

k 2
ko, (18.15)

kin=ki+k)> P
k

where kf is the rate of the spontaneous transition and k! is the fitting parameter of
the light-induced transition rate, which is assumed to be site independent. k; , is
defined as the transition rate of the nth pigment in the ring from state “1” to state
“2”. Thus, the second term determines the rate of the light-induced change of the
protein conformation and, therefore, it is proportional to the sum of the contribu-
tions of the excited pigment to the exciton states weighted with the thermodynamic
population of those states. It is also dependent on the frequency of the excitation of
the complex, which is accounted for by k?. The rate of spontaneous changes, k$, is
determined by the height of the energy barrier separating states “1” and “2”. Tran-
sition rates determined in this way are defined for a particular realization of the
static disorder. However, the barrier crossing is a stochastic process, and it should
be considered when calculating the time-span in a particular conformational state.

As this model takes into account the switching probability that each pigment
molecule in the antenna ring may be in two possible energy states, it reproduces
the bulk fluorescence spectrum with the spectrum of the single LH2 averaged in
time as well as the statistics of the fluorescence peak distribution [169, 170]. It also
explains the fluorescence changes attributing them to conformational motions of
the protein. In general the conformational changes of the protein are represent-
ed as a diffusive motion between the local minima in the multidimensional en-
ergy landscape, therefore, the two-state model should be considered as an evident
simplification. However, it provides an intuitively clear picture of possible protein
motions as attributing the movement of the protein surrounding between the two
equilibrium positions to the potential energy barrier in between. Moreover, it al-
so resembles the two-level model used to describe the hole burning and spectral
diffusion. The exponential kinetics evidently neglecting the details of the spectral
diffusion was assumed to characterize the transition between two states.
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Appendix

Al
Elements of the Field Theory

In the classical theory of fields several basic concepts are useful for manipulation of
field-related values [190]. We first denote a scalar field ¢(r) = ¢(x, y, z), whichisa
single-valued function of space. A vector field A(r) = x A, (x,y,2)+yA,(x,y, 2)+
zA.(x, Y, z) assigns a vector to each space point; A,, A, and A are scalar fields.
A gradient operation of the scalar field is denoted as

¢ 9 099

gradg = F + Wy + 522 (A1)
where x, y and z are the unit vectors of the Cartesian coordinate system. The
gradient of a scalar field is thus the vector field which describes the rate of change
of the field. The variation of the vector field within the space is described by two
types of differential operations. These are the divergence and the curl or rotor of
the vector field

0A, DA, A,

divA = x W 0z

(A2)

This operator describes the source of the field at a given point. The curl or rotor of
the vector field describes the rotary nature of the vector field at a point

(A3)

Notice that the divergence creates a scalar field, while the curl creates the vector
field.
These differentiation operations can be easily denoted using the nabla operator
0 0

d
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We thus have
gradgp = V¢, (A5)
divA=V-A (A6)
and
curlA=VxA. (A7)

Often we face the problem of differentiation of some field products. In that case
the general differentiation rules apply, that is for instance

V- (pA) =(Vo)-A+ (V- A), (A8)

V(A- B) = V4(A- B) + Vi(A- B), (A9)
where V, operates only on field A. Slightly more complicated are operations with
the curl:

V.-(AxB)=B-(VxA) —A-(VxB), (A10)

Vx(pA) =¢-(VxA)+(Vp)x A, (A11)

Vx(AxB)=A(V-B)—B(V-A)+ (B-V)A—(A-V)B. (A12)

Some useful relations of the fields operators for electrodynamics are

VxVxA=V(V-A)—(V-V)A. (A13)
Here
2 02 02 0?
V-V A= VA= = —4+ —=+ — .
( JA A= AA (8x2 + 3y + azz) A (A14)

Operator A = 9%/dx? + 9%/dy? + 8%/3z? is known as the Laplace operator. Some
identities are

Vx(Vg)=0, (A15)
V- (VxA)=0. (A16)

These operations can be also represented using the Levi-Civita symbol €; j; which
is equal to 1 for cyclic configuration of indices i j k = 123, 312, 231, equal to —1 for
anti-cyclic configuration 132, 321, 213, otherwise at least two indices are equal and
then the Levi-Civita symbol is equal to 0. The vector differential calculus can be
described using the Levi-Civita symbol since

AXBZGUkeiAJ'Bk, (A17)

where triple summation over i j k is implied, e; = x e¢; = y e3 = z. Then the curl
operation is

d
(VXA)i=€ijk6i$Ak. (A18)
J
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A.2
Characteristic Function and Cumulants

In statistics for a stochastic variable x characterized by the probability density p(x)
the moments are averages .. (or (...)) and are calculated as

x" = (x") = /dxx”p(x) . (A19)
We define the characteristic function
G(k) = (exp(ikx)) . (A20)

If we expand the exponent we have

(k)" »
Glky=>" ) (A21)
We can thus observe that the derivatives of the characteristic function generate
moments
_,d"G(k
(x") =1 dki )|k=0~ (A22)
We can also define
G(k) = exp(g(k)) (A23)
and use the expansion
(ik)"
glk) =3 cn. (A24)

n

cn are denoted as cumulants. Using the derivatives of the characteristic function
the cumulants can be given by superpositions of moments. For instance

o = (x) (A25)
6 = (%) — (x)? (A26)
63 = () = 3(x)(x?) + 2x)’ (A27)

(A28)

Let us assume the Gaussian probability density

p(x) = ! exp(—w). (A29)

o2n 20?

The characteristic function for these Gaussian statistics can be explicitly calculated

G(k) = ex ( _Z 2)
=exp | i(x)k 5 k) . (A30)
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So it turns out that

ik = T
glx) =i{x)k — =k (A31)

and so the cumulant expansion is only up to k? term. We also get two cumulants:
the mean ¢; = (x) and the variance ¢, = o?.

Similar manipulation can be used for a time-ordered set of a stochastic variable
or the stochastic process x (). In the case of the stationary process the characteristics
of the process do not depend on time explicitly; however, they depend only on the
time differences. We can thus introduce the correlation functions. The characteris-
tic functional

G(k(t) = <exp (i/dtk(t)x(t))) (A32)

can be defined for an arbitrary real-valued function k(t) [52]. This functional then
generates the correlation functions
0" G(k(1))
Ok(t1)0k(ty) ... Ok(tyn)

= i"(x(b)%(t2) - . - %(tn)) - (A33)
k(t)=0

The functional can then be expanded as
in
G(k(t) = 1+Zm/dt1/dtz.../dt,,(x(tl)x(tz)...x(tn)). (A34)

The function x(t) is a random Gaussian process with zero mean when its corre-
lation functions factorize as

(x(t)x(t2) ... x(ty+1)) =0, 1=0,1,2,... (A35)
1
(e(t)x(ta) .. x (b)) = D [ [ (x(tia)*(t5a)), E=1,2,3,... (A36)
pairs a=1

where the sum over “pairs” runs over all the different ways in which the 2[ indices
can be subdivided into | unordered pairs. For example,

(% (1) x (t2) % (t3) x (ta)) = (x(t1)x(t2)) (% (t3) % (ta))
+ (e (1) x(3)) (x (k2) % (ta)) + (2 (t1) % (84)) (2 (£2) % (£3)) - (A37)

For the characteristic function this yields
1
G(k(t)) = exp (—E/dtz/dtlk(tz)(x(tz)x(t1)>k(t1)) . (A38)

The Gaussian stochastic trajectory is, therefore, fully characterized by the two-point
correlation functions.
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A3
Weyl Formula

Suppose that we have operators A and B and their commutator [A, B] = ¢ is a
number. Then the commutator

[A exp(aB)] =) W[A’ B"]. (A39)
B
Now
[A, B"| = AB" — B"A=(c+ BAB" '— B"A=...=ncB"7'. (A40)
This yields
[A, exp(a 1§)] = acexp(a 1§) . (A41)

By using these expressions we can write
exp(—a E)[A, exp(a 1§)] = acexp(—a fi)exp(a 1§) (A42)
or
exp(—afi)Aexp(aé) =A+ac. (A43)
We next denote
f(x) = exp(Ax) exp(Bx) , (A44)
where x is a number, and A and B are any operators. Differentiation of f leads to

d

3 f1¥) = f(x)exp(—Bx) Aexp(Bx) + f(x)B

= f(x)(A+ B + x¢). (A45)
Putting A + B = Z gives the differential equation
F'0) = fx)(Z +x0) =0, (A46)
the solution of which is given by
~ X2
f(x) = exp (Zx + 67) (A47)

or taking x = 1 we get the Weyl formula

N[ =

exp(A) exp(é) = exp(A + 1§) exp ( [A, ]§]) . (A48)
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Appendix

A4
Thermodynamic Potentials and the Partition Function

The energy and entropy of an isolated system can be characterized by thermody-
namic potentials. The natural parameters of the system in this case are the internal
energy U, the entropy S, the volume V and the number of particles N. They com-
pletely define the state of the system, so if we take a function

U=U(S,V,N) (A49)
then
AU AU AU
dU = —|yndS + — dVv + — dN A50
g5 WdS + 5y . TN sy (A>0)
where
U U AU
=T, —glsn=-p, lsv=p. (A51)

sl =T v N

T determines the temperature, p is a pressure, u defines the chemical potential.
We can similarly write

_1 p u
ds = —dU + -dV — ZdN, (A52)
where
39S 1S 39S
e il I o I L (A53)
dUlyy T dV|gy T ON|yy T

Additional set of thermodynamic potentials can be easily created as superposi-
tions of the other potentials. Thus, the free energy is given by

F=U-TS=-pV+uN. (A54)
The free energy is a function of T, V, N. The enthalpy

H=U+pV (A55)
is a function of S, p, N. The Gibbs free energy

G=U-TS+pV (A56)
is a function of T, p, N. The grand thermodynamic potential

® =F—uN (A57)

is considered as a function of T, V, u. Maxwell relations are derived from the re-
lations between the second order partial derivatives of the potentials. These are
described in any textbook of thermodynamics, see, for instance, [37].
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A.5 Fourier Transformation

Thermodynamic potentials are tightly related with the partition functions. The
canonical ensemble describes a closed system. The partition function of the canon-
ical ensemble directly leads to the free energy

F=—kyTInZ. (A58)

Other properties follow from thermodynamic relations. For instance, the internal
energy

0lnZ
__ dnz AS
v [1/(ks T)] (859)

and the entropy

S =-(ksTInz). (A60)

The grand canonical ensemble describes the open system and its partition func-
tion directly provides the grand potential

® = —ksTInZ,. (A61)

Thermodynamic properties of the open system can thus be described using the
partition function through thermodynamic relations.

A.5
Fourier Transformation

The symmetric integral form of the Fourier transformation is defined as follows

oo

fiy= [ e (A62)

—00

and the similar expression is given for the inverse transformation

flx) = / fA)e?™**dz . (A63)

In mathematics all variables, x and A, are dimensionless. However, in a physical
context we always add dimensional meaning to the quantities: if x is time in sec-
onds, then 4 is the frequency in Hertz, or if x is coordinate in meters, then 1 relates
to wavenumbers.

The following symmetry identities follow from definitions given by (A62) and
(A63):

flx)y=0(x): f(A)=1 (AG4)

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

421

I

—F

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —
Chap. a01 — 2013/6/3 — page 422 — le-tex

—F

422 | Appendix

flx)y=1: f(A)=0(4), (AG5)
/ ety = 5(y) . (A66)

In realistic applications it is necessary to use the sampling theorem, which states
that for a function of frequency defined from —A/2 to A1/2 and sampled by N
points with resolution d4 = /1 /N, the original function of time should be sampled
atintervals dx = A~'. The number of points N must be the same in the original
and in the transformed function. Thus, the length of time trajectory X = NA™!
gives frequency resolution d4 = A /N. If these conditions are satisfied, the numer-
ical representation of relations, given by (A64) and (A66), is automatically satisfied.
This gives dimensionless relationship:

1
dwdi = — . (AG7)

In physical applications it is more convenient to use the cyclic frequency
® =27, (A68)
as a conjugate time variable, and a wavevector
k=2ml, (A69)

as a conjugate coordinate variable. Also, due to wave properties of the electromag-
netic field we will use the following form of time-space transformations and we
skip overbars; instead we explicitly denote the argument:

flk, o) = / flx, tye k¥ tiotqydt (A70)
and
Tk T d e
flx,t) = / = / %f(k,w)elk"—lw‘. (A71)

or equivalently we use transformation for time or coordinate only. For the cyclic
values we have nonsymmetric relations

fly=9(): flo)=1, (A72)
fity=1; f(o)=2nd(w), (A73)

which gives

o0
/ dxe™™ = 275 (y) . (A74)
—Oo0
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A.6 Born Rule

In quantum mechanics the momentum-wavevector relation p = hk implies
that the momentum can be used as a conjugate variable to a coordinate in the
Fourier transform meaning. In the momentum integration it is useful to invoke
the interval defined

dp

Th (A75)

which has a dimension of inverse coordinate. Thus, dx - dp/(27th) is a dimension-
less quantity.

A.6
Born Rule

Here we show that |(y|ay)|? is the probabﬂlty for the system to be observed in the
state |a;). Let us have an operator J| N which gives us the frequency v ) of the
occurrence of the state |a;) among the states constructed out of the elgenstates la;)
of an ensemble of N identical systems. We first construct the following vector

|2) = (FY = l(wlan)?) ). (A76)
The vector | ) is an eigenvector of F}, with the eigenvalue |{y|ay)|? if
; (N) (N)
Jim (" o) = 0. (A77)

This is not difficult to show. First we write out the scalar product (@,EN)M),EN))
explicitly

(@] @) = 1 =21 + (lan)*, (A78)

where
Il(N) = (¥ (N)|]:(N) (N)W,(N))
= [(p]aw)* Re (F M| FN @ M) | (A79)

We start with evaluation of the term I Z(N). First, using (6.83) and (6.84), we write it
as

1
:ﬁz > Oud(wla . [(ylai) vl (A80)

a il,iz,...,iN
For each a value we obtain

2
> dulwlaih . lwlawi = WO

11,02, IN

(A81)
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where the fact that ), |a;)(a;| represents a unity operator is taken into account.
This summation can be done for all systems in the ensemble, except of the one
with index equal to a given a. The term [ Z(N) comprises N of such terms and con-
sequently

N
5 = lylan*. (A82)
The term [ 1(N) can be calculated in an analogical manner. We can write it as
1
N
=252 2 duoulwlannl .. [(wlai il - (A83)
aB inigein

We have N cases where a = f and it allows us to evaluate |(y|a;)|?/N, and
N(N — 1) terms where a # f3, thus, providing the following result: |{y|a;)|*/N2.
In total we get

1 1
e (e I (A84)
Inserting (A82) and (A84) into (A78) we obtain

tim (2] o) = = ((wlanl’ + [l =0, (A85)

N—o0

and any vector |¥) is therefore an eigenvector of the operator F; with the corre-
sponding eigenvalue | (1 |a;)|?.

A.7
Green'’s Function of a Harmonic Oscillator

The equation for a driven harmonic oscillator is
¥4 olx = f(t). (A86)
We make a Fourier transform and get the solution

f(o)
>

x(w) = T —w
0

(A87)

The inverse Fourier transform will be also performed. First we rewrite

11 1 1 Ass)
-0} 2w \0—w, o+’

Then we can write a convolution expression

x(t) = /dt/G(t —t) f(t), (A89)
0
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A.8 Cumulant Expansion in Quantum Mechanics
where
T 1 d 1 1
w .
G(r) = / —— | —e7" - (A90)
2w 2n w—wy -+ wy

is called a Green's function. For calculation of the integral over the frequency we
apply the Cauchy integration formula. However, we want to construct a causal
function that reflects f(t) causal relation to the x(t). We should then have ¢’ < t
in (A90). Specific selection of the integration contour and poles give the following.
For poles we have to check the exponent exp(—iwt) at 7 > 0; if we take the complex
frequency w = tw +in with n — 40, the exponent exp(Fiwt + 1 7) diverges for
positive 7. When we take w = +w( — iz, the exponent exp(Fiwot — 77) decays
with 7 > 0. So the poles must be taken at the lower complex half plane and this will
ensure that G(r) is nonzero only for positive times. The integration then yields:
G(r) = _900) sin(woT) . (A91)
Wo
To emphasize the complex nature of the causal Green’s function in the frequency
domain we write

1 1 1

G(w) =~ lim -— ( — — . ) (A92)
7—02w0 \w —wo+1p o+ wo+ 17y

or

(A93)
Here we rescaled 27 — 7 as it approaches zero.

A8

Cumulant Expansion in Quantum Mechanics

The wavefunction propagator for a time-dependent Hamiltonian in quantum me-
chanics is given by:

U(t) = exp, —i/dzﬁl(z) . (A94)
0

It is reminiscent of the characteristic functional, and thus, we can apply the cu-
mulant expansion. When the time-dependence is due to Gaussian fluctuations of
energy values (the adiabatic approximation) in the eigenstate basis we have

(a|U(t)|a) = exp,. —i/drsa(r) . (A95)
0
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for the state |a). The propagator is given by series of the expansion and its statistical
averaging gives

72

(Uaa(t)) = e_”“‘<1—i/tdréa(r) —/dTZ/
0 0

0

d‘[lg‘a(‘[z)g‘a(‘[l) +.. > .
(A96)
The mean value of the fluctuation has been included into ¢,, and &, is a zero-mean

Gaussian fluctuation. The first integral vanishes as averaging is performed. Taking
the cumulant expansion we find the exact expression

(Usa(t)) = eieetBeell) (A97)

where
gﬂa(t) = dTZ d71<§a(72)§a(11)) (A98)
0/ o/

is a linear transformation of the correlation function and it is denoted as the line-
shape function. Here we use two indices for the lineshape function. Sometimes we
use four indices for the lineshape function. That form correlates two elements of a
general fluctuating hamiltonian matrix. For instance

Gabed(t) = [ dr, / A1 (hap(T2)hea(71)) (A99)
0 0

and gaapp(t) = gan(t)-
Some useful properties related to the lineshape functions are

gaa(0) =0, (A100)

b d
/er/drlcab(rz—rl) = gap(a—d)—gap(a—c)—gan(b—d) + gap(b—c¢) ,
(A101)

which become apparent by considering the geometry of triangular integration ar-
eas; moreover

/ A7 Cap(7) = gap(t) , (A102)
0

Can(t) = Zan(t) (A103)
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A.8 Cumulant Expansion in Quantum Mechanics

as well as
Gab(t) = Zha(—t) - (A104)

As the correlation function is defined using the spectral density C”(w), the line-
shape function can be conveniently expressed using the Fourier transform of the
correlation function

oo

do C :
g(t) = / % cff;))(l—e“‘”—iwt), (A105)

or using the spectral density

o0
do C” )
g(t) = %% [1 + coth (ﬁTa’)] (1—e7" —iwt) . (A106)
—00
A8.1
Application to the Double Slit Experiment

The recipe described above applies to the dephasing. Let us consider (6.34). We
expand the exponential and evaluate individual terms

t

i e
(nlna) ~ 1= 5 [ de(nol 0] (11AZ Ou(e) o)
0

t T

1 . N N
~ 3 / d‘t/dr’(n0| Ul (1) AE Ui (t — T)AE Uy(T)|n0) + ...
o0

(A107)

We will make an assumption that (#1|AZ|5;1) = 0, which can always be enforced
by redefinition, AZ — AE — (11]AZ|n), when it not satisfied. The first nonzero
term is, therefore, the one of the second order. We define functions

Cr, 7') = (0| U (1) AE Uy (v — T')AE Uy (') |770) , (A108)
and
1 t T
g(t) = ﬁ/dr/dr’C(r, 7). (A109)
0 0

In terms of the cumulant expression the overlap can be written as an exponential
(mlna) = e780). (A110)

This expression is exact if the bath effect is Gaussian.
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A8.2
Application to Linear Optical Response

The linear optical response is given by the correlation function of the dipole opera-
tor
CO(t) = Tep{(H)A(0) W(0)} (AL11)

Here W(0) is the full density matrix at zero time. The dipole operator can be easily
obtained if we take system eigenstate basis, and assume that the bath adds diagonal
fluctuations to the system energies. The dipole operator in the presence of the bath
is then

0 ¢
= Zuabe““““|a)(b|exp+ —i/drea(r) —i/drsb(r) . (Al112)
ab t 0

For the density matrix we assume the canonical distribution in the observable sys-
tem and bath subsystems. We use the cumulant expansion by assuming that the
bath is arranged by a set of harmonic oscillators and thus the fluctuations are Gaus-
sian. The correlation function is then given by cumulant expansion

C(Z)(t) — Z ﬂ_‘”;b“e—ﬁwe—iwbat
ab

0 ¢
Trg { expy —i/drsa(r)— i/drsb(r) B - (A113)
' 0

The exponent denotes the expansion

0 ' 0 ¢
exp —i/drsa(r)—i/drsb(r) = 1—i/drsa(r)—i/drsb(r)
t 0 t 0

0 T) t i1
—/d‘[z/d‘[lsa(l'z)ea(‘[l)—/d‘h/d‘[zsh(‘[z)eb(l'l)
t t 0 0

0 t
—i/df]/dfzfa(fl)gb(TZ)+"-
t 0

(A114)
Taking the statistical average yields
0 :
<exp+ —i/dtea(t)—i/drsb(r) >
t 0
=1—gaa(—t) — 8ob(t) — Zab(t) — Zab(—1) - (A115)
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A.8 Cumulant Expansion in Quantum Mechanics
For the correlation function we then have

COI(t) = 3 Ko exp(iarpat — gla(t) = ganl?) = 8ubl?) = 81al1)
ab
(A116)

where

Z=>) ehu (A117)

and is the partition function and 8 = (kg T)™".

A8.3
Application to Third Order Nonlinear Response

The third order optical response is given by the correlation function of the dipole
operator

C (b4, 13, 1o, 11) = Trg{fu(ba)it(t3) it (12) t (1)) W(0)} - (A118)

It is mathematically more involved than the two-point correlation function of the
previous subsection, but it is straightforward to proceed with the cumulant expan-
sion. The result is given in a following form:

CO(ty, ty, o, tr) = 7/‘“"”“1;“’””%—%
abcd
X eXp(—iw gtz — 10 ¢at32 — iWpata

+ deba(t4! t3r tzr tl)) ’ (A119)

where t;; = t; — t;. To calculate fycp, We have to consider the propagator

ts4 t3 7] t
exp —i/drsd(r)—i/drsc(r)—i/drsb(r)—i/drea(r) . (A120)
t3 t2 t1 t4

The cumulant expansion finally gives

(t43)
+ gaclts2) + gac(tas) — Gac(ta)
— Zap(t32) + Zan(t31) + Gan(ts2) — Gan(ta1)
— 8da(t31) + da(t34) + gda(tar)
+ gen(ta1) + gen(t32) — Gen(t31)
— Zealta1) + Zealtaa) + Zealt31) — Zealts4)
+ Zha(t14) + Zpa(t21) — Zhal(tas) - (A121)

This expression again holds for the adiabatic regime when observable states do
change their states due to bath fluctuations.

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

429

85U8D17 SUOLILIOD BAIIID qedt|dde au Aq peulenob afe soile O ‘SN Jo Sa|nJ oy Aleld178UIIUO A1 UO (SUONIPUOD-PpUe-SULIB)A0Y A3 A eld| U1 |UO//:SdL) SUONIPUOD Pue SWie 1 81 89S " [7202/20/yT] Uo Akiqiauliuo AS|IM ‘AISIBAIUN [BULION BUIYD UINOS AQ /I0p/0d A8 1M Alelq iUl juo//:Sdy Woly pepeojumod



@_

I

Leonas Valkunas, Darius Abramavicius, and Tomas Mancal: Molecular Excitation Dynamics and Relaxation —

430

Chap. a01 — 2013/6/3 — page 430 — le-tex

Appendix

A9
Matching the Heterodyned FWM Signal with the Pump-Probe

Imagine two experiments: one in which we excite our system with three pulses
coming from three directions ki, k; and ki, and one in which the first two pulses
merge into one, coming from the direction kp, = k;. The first and the second
pulse comes at exactly the same time, while the last pulse comes with a given
delay time T. The former of the two measurements gives us a background-free
signal field Eq(t) into the direction —k1 + k, 4 ky (and to many other directions),
while the latter one results in exactly the same signal, but going into the direction
—kpu + kpu + ke = k. The latter scheme clearly represents the pump probe
measurement, and it enables us to determine the differential intensity

Al ~ Re (Es(t)E;(t)) . (A122)

In the former situation we can use heterodyne detection and we obtain a similar
result

Alo ~ Re (Es(t)Ejo(t)) , (A123)

which only differs by an arbitrary phase of the local oscillator.
Let us assume the three involved fields have phases ¢, ¢, and ¢ 1o so that we
can write

Ey(t) = E()e 9 TP | E (1) = Ep(t)e 12 e (A124)

Ero(t) = Eo(t + tg)e 2T To0 (A125)

The local oscillator comes usually from the same source as all other pulses, and
their envelopes are, therefore, the same, that is £io(t) = &En(t). We assume all
pulses to have a central frequency £ and the local oscillator is sent prior to all
other pulses. The delay between the last pulse of the sequence, which is the probe
pulse, will be denoted t4. The two differential intensities then read:

Alyp ~ Re (E(t)Epe(t)e! P ?0)) (A126)

Alio ~ Re (E(H)Ero(t + ta)elPs—PLo)Hi2t) (A127)

The measurement can be performed equally well in frequency domain, that is by
first dispersing the signal according to the frequency and then looking at the inten-
sity at each frequency:

Alyp(0) & Re (Eg(@)Epr(w)e! P %)) (A128)

Alio(w) ~ Re (E(w)Ero(w)el?s—Prol—ie=@)k) (A129)

where argument w denotes the Fourier transform of the corresponding real en-
velops. A quick look at (A129) shows us that A I} o(w) is modulated by the factor

I
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el and correspondingly as a function of w it oscillates with frequency t;. The
frequency of this oscillation is therefore given by the delay t, which is set experi-
mentally.

Now we can use a numerical trick which will enable us to compensate for the
arbitrary phase change between (A128) and (A129). We will Fourier transform the
differential absorption measured with the local oscillator:

o0
1 .
Alio(t) = o / doATo(w)e " (A130)
—o0

Because Alo(w) is a real function, its Fourier transform is symmetric, that
is Alio(—t) = Alip(t). Setting the negative time part of the function to ze-
ro, and Fourier transforming the function back to frequency domain we ob-
tain a complex function, which should correspond to the function AI/,(w) =
Es(w)Ero(w)el?s—P10)7i0 =)t of which we measured the real part:

oo
Allg(w) =2 / dtO (A Iio(w)e (A131)
—0Q
The last step of the procedure is to multiply A I/ (w) by a phase factor e/*? such
that

Re (AI{p(w)e?) = Aly(w) . (A132)
In theory we can easily see that
AP =—Pp+ o+ (0 — Q)i (A133)

but experimentally, the only way to determine the phase is by fitting. It is important
to realize that if we would not have set a delay between the local oscillator and the
signal, and if we were extremely unlucky in setting our local oscillator phase, we
could have had it such that AI; o ~ 0. With a considerably long delay t4, any value
of ps— 10 is allowed, and any value can be compensated by fitting. It is, therefore,
these “artificial” oscillations on A I caused by the delay t, which enable us to
recover the signal phase.

This phasing procedure is of extreme importance for the two-dimensional coher-
ent spectroscopy that is introduced in Chapter 16. There the phase of the spectrum
in the experiment is adjusted by comparison with the pump probe spectrum just
as described here. However, this is not necessary in simulations where the signals
are given by response functions.

A.10
Response Functions of an Excitonic System with Diagonal and Off-Diagonal
Fluctuations in the Secular Limit

Here we present the third order response function expression written in terms of
resonant Liouville space pathways (or Feynman diagrams, shown in Figure 15.4).
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We break the response function into the following contributions: induced absorp-
tion (IA), stimulated emission (SE) and ground state bleach (GSB). Additionally,
we distinguish terms with the population (p) in the second interval t, or the coher-
ence (c), and the population can be transferred from e to ¢’ — such diagrams are
indicated by prime.

The rephasing response function is given by the following seven terms:

Sty — _ Z Z Gee(ta) {lteegl* e I?)
e f

x exp(iweghy — 1w fet3

+ conj[—g7,(t2) — 87 f(13) — Gee(t1 + 12 + 13)

— g (b + t) + g (k) + 84 ()

= Bee(t1) + 82o(t2 + 13) + Gee(t1 + t2) — gL (t3)

—gef(t + 1) + gl (13) + Gep(ti + 1 + 13)]) (A134)

SIA/ — Z Z(ﬂe/ﬂe/f,uef‘u@)

¢Fe f
X exp(iwegh —iw ety —iw fots
+ conj[—gh (t2) — g5 £ (t3) — Beeltr + t2 + 13)
— 8ot + 1) + g0 p(t2) + g7 p (1)
= gre(t) + 80(t2 + 1) + gee(tr + 1) — g1, (1)
—ger(ti+ 1) + glp(53) + gep(t + b+ 13)]) (A135)
Sthe= =" uomesuesue)
e#e f
X exp(iwegtt — iWeety —iw fots
+ conj[—g7 (t2) = g5 (1) — geeltr + 12 + 1)
— 8ot + 1) + g7 (t2) + g7 p(t3)
—gre(t1) + gy o(t2 + 1) + gee(tr + 1) — g1, (1)
— et + 1) + glp(53) + gep(t + b+ 13)]) (A136)
s = {luellueP)
et
X exp(iw egtt + 1wty —iw oty
— Bre(t + t2) — goer(f2 + t3)
— g (h) + 8l (b + b + 1) + e (B2) — 81 (13) (A137)
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SSEP = Z Ge/e(t2)<|/"8|2|/’te/|2>

e=¢/
X exp(iwegts — iwyrgts

— gt 4 t2) — gere (2 + 13)

—gro(t) + g (b 4 b+ 1) + Geer(t2) — 81 (13))

SSE}; = Z Ge/e(t2)|/"6|2|/"e/|2
eFe/

X exp(iwegh —iw gty — yots — Yoty

— Zee(t1) _g;e’(h) + gee(ti + 12 + 1)

- ge/e(tl + t2) - ge/e(tl + t3) + ge/g(tz))
S = 3 (e lie ) expieghs — ity

ee’
— g () — gee(t3) — gy (h + 1)
+ g (i +t+ b))+ gh(t) — gh(t + 1))

The nonrephasing response function is a sum of
SIAP = - Z Z Ge’e(tz) (|/"e/f|2|/"e|2)
e=e f

x exp(—iwegh + iw,fts

+ conj[—gly (t + t2) — g 5 (t3) — Gee(t2 + 1)
—goplti+t+t3) + gop(h + t2) + g7 4 (13)
—8oo(t) + 8oo(t + b2 + 1) + goe(ta) — 87, (t3)
— gre(t2) + gF.(13) + grelta + 13)])

S = — 3N Guelta) (luer s Pluel?)

eFe f
X exp(iwegtl —iweft3 — yerts — Yeh
+ conj[—gee(t1) — g5 5 (1) — g1 (1)
—gre(tr + 12+ 83) + gre(tr + 1) + gre(t2 + 13)
+gee(ti + 12+ t3) — gee(ts + t2) — gere(t2 + 13)
+ ge (ts) + g?e’(h) + gee(t2) — gre(t2)])

(A138)

(A139)

(A140)

(A141)

(A142)
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SlAc _ _ Z Z(/Ae/ﬂg/fﬂfe/‘e>

eF#e f
X exp(—iw gt +iwerty +iw,fts
+ conj[ g, (t + 1) — g7 f(t3) — Gee(ta + 1)
=g+t +t3) + gyt + t2) + o p(h)
—8ue(t1) T guo(t + 1+ 1) + goe(ta) — g0 (1)
— gre(t2) + gFo(83) + gre(t2 + 13)]) (A143)

SSEP = Z Ge/e(t2)<|/"8|2|/’te/|2>

e/=e

X exp(—iw gty —i€ygts

- g:e(tz) — gt + o+ 13) — geer (1)

+ 8o (ta + 1) + gewr (b1 + t2) — gL (13)) (A144)
S = 3 Gorelta) (Iuel e )

e

X exp(—iw gty —iweygts — Yerts — Yot

— Zee(t1) — Gerer(£3) — Gere(tr + t2 + 13)

+ goe(ts + t2) + gere(ts + t3) — gere(ta)) (A145)

SSE = 3 {uePlue?)

e'F#e

x exp(—iw gty + 1wty — iw gt

— goo(t2) — 8o (ti 4 ta + t3) — g (1)

+ gt + 1) + ger (b + 12) — 81 (13)) (A1406)

SOSB = Z(|/Ae|2|/ft6/|2)

X exp(—iw gty —iw gts
- gee(tS) - ge/e/(tl) - gee/(tl + & + t})
+ geer (B2 + 13) + Geer (b1 + 12) — gee/(tl))- (A147)
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Finally the double-quantum coherence response function is given by

SM =" uope sl o)
ee f

X exp(—iwegh — 1w fgty — iwergts

— 8o (t3) — 8rr(ta) — Beeltr) — 8o f(t2 + 13)

+ ge’f(t3) + ge’f(tz) —gee(t1 + 12 + 13)

+ gee(ts + 13) + gre(tr + 12) — Bere(t2)

—gre(ti + 1) + gre(t2) + gre(tr)) (A148)

and
SZQz = —ZZ(ﬂeﬂgfﬂfe/ﬂe/)
e f

X exp(—iwegtl —iw gty +iwy rt3

+ conj[ g7, (t) — g5 s (t2 + t5) — 8 s (b + ta + 13)

+ g p(h) + gt + 1) — gro (b + b)) — 8o (ts)

+ gttt + 1) + g (B) — grw (b + 1)

— gfu(t) + gFo(ta + 1) + gre(t3)]) - (A149)
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A

absorption coefficient, 286

action functional, 8, 228
adiabatic approximation, 102
Anderson localization, 130
antisymmetric wavefunction, 177

B

Bloch theorem, 77, 119

Bloch wavefunction, 77
Boltzmann statistics, 170

Born approximation, 247

Born rule, 55, 149
Born—-Oppenheimer approximation, 102
Bose-FEinstein statistics, 93, 179
boson, 177

bra vector, 56

Brownian motion, 27

C

Caldeira-Leggett model, 190
canonical equations, 10

canonically conjugated momentum, 10
Chapman-Kolmogorov equation, 33
charge-transfer exciton, 121
classical harmonic oscillator, 11
closed system, 162

coherences, 63

coherent states, 98

conditional probability, 30
continuity equation, 15
correspondence principle, 52
Coulomb gauge, 14

D

damped mode, 206
Davydov ansatz, 127
Davydov splitting, 109, 118
Davydov subbands, 117

447

de Broglie wavelength, 52
decoherence, 139, 144

density matrix, 61

density matrix tomography, 371
density of modes, 19

density operator, 62

dephasing, 300

detailed balance condition, 35
dipole-dipole interaction, 107
disorder, 305

displaced oscillator, 203
displacement operator, 99, 360
displacement vector, 25
doorway-window representation, 352
double excited state, 112

double quantum coherence, 326
double sided Feynman diagrams, 322

E

effective mass, 81

Einstein coefficient, 90
electromagnetic field modes, 94
energy gap operator, 297

energy relaxation, 295
entanglement, 136

entropy, 163

Euclidean action, 231

excitation self-trapping, 126
excited state absorption, 291, 352
excited state emission, 291, 352
excitons, 107, 116

expectation value, 55

F

Fermi golden rule, 88-90
Fermi-Dirac statistics, 93, 181
fermion, 177

Feynman-Vernon functional, 234
filter, 150
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fluctuation—dissipation theorem, 193, 196
fluorescence blinking, 404
fluorescence excitation spectrum, 312
fluorescence intermittency, 404
fluorescence line narrowing, 309
Fokker—Planck equation, 39

four wave mixing, 288
Franck—Condon energy, 106
Franck—Condon factor, 360
Franck—Condon transition, 203
Frenkel exciton, 112

G

gauge function, 14

gauge invariance, 14

generalized coordinates, 8
generalized master equation, 247
Green’s function, 66

ground state bleach, 291, 352

H

Hamilton equations, 10

Hamilton principle, 8

Hamiltonian density, 18

harmonic oscillator, 11, 41

heat, 163

Heaviside step function, 285
Heisenberg representation, 59
Heisenberg uncertainty principle, 52
Heitler-London approximation, 108, 112
Helmbholtz theorem, 15

heterodyne detection, 293

hierarchical equations of motion, 244, 263
highest occupied molecular orbital, 122
high-temperature limit, 175

Hilbert space, 53

homogeneous broadening, 305
Huang-Rhys factor, 203, 362

1

independent events, 30

induced absorption, 291, 352
induced polarization, 282
influence functional, 232
inhomogeneous broadening, 305
interaction representation, 60
irreversible process, 163

isolated system, 162

J
J aggregates, 115

K
ket vector, 56

kinetic energy, 8
Kolmogorov axioms, 29

L

Lagrange equation, 9
Lagrangian, 8, 227

Lagrangian density, 17
Lambert-Beers law, 286
Langevin equation, 47

lifetime induced dephasing, 301
Lindblad equation, 260

line shape function, 298

linear susceptibility, 285
Liouville equation, 40

Liouville space, 66

Liouville space pathways, 319
Liouville superoperator, 210
Liouville theorem, 169
Liouvillian, 210

local oscillator, 293

lowest unoccupied molecular orbital, 122
low-temperature limit, 184

M

Markov process, 32

master equation, 35
Maxwell-Liouville equations, 279
microcanonical ensemble, 167
minimal coupling Hamiltonian, 23
mixed states, 64

mixing angle, 111

modes of electromagnetic fields, 18
modified Redfield theory, 256
molecular exciton, 101

N

Nakajima—Zwanzig identity, 215
nonadiabaticity operator, 103
nonlocality, 136
nonphotochemical quenching, 405
nonrephasing pathway, 326

(0]
open system, 162
overdamped mode, 206, 207

P
p A Hamiltonian, 23

partially deterministic process, 44
partition function, 170

path integral, 227

Pauli commutation relations, 114
Pauli exclusion principle, 93, 177
permanent, 177
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phase space, 6, 172

photon echo effect, 338
photon echo peakshift, 342
physical delta function, 327
Poisson brackets, 41, 168
potential energy, 8
preferred states, 145
probability, 29

probability amplitude, 55
probability space, 28
probability theory, 27
pump probe experiment, 291
pure dephasing, 295

Q

quantum entropy, 168

quantum harmonic oscillator, 67, 174, 183,
196

quantum Langevin equation, 195

R

Raman scattering, 222

random process, 31

random variables, 31

Rashba effect, 130

Redfield equation, 250
reorganization energy, 106, 206
rephasing pathway, 326
resonance interaction, 109
response function, 282
rotating-wave approximation, 198, 251, 323

S

scalar potential, 14
Schrédinger representation, 57
secular approximation, 250
secular Redfield equation, 252
single-exciton state, 113

Slater determinant, 177
spectral density, 185, 194
spectral diffusion, 404
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spontaneous emission, 90

state vector, 53

stationary Schrédinger equation, 54
statistical mixture, 64

stimulated emission, 291, 352
stochastic Liouville equation, 244
stochastic Schrédinger equation, 239, 240
stochasticity, 27

Stokes shift, 122

superoperator, 66

superselection, 145

supramolecule, 23

system state, 162

system-bath coupling, 190

T
theorem of large numbers, 29
thermal contact, 162

thermal equilibrium, 162
tight-binding approach, 122
time-ordered exponential, 58, 143
total density matrix, 295

transition probability, 31

Trapped exciton, 130

two dimensional pump probe, 347
two-photon absorption, 222

U
undamped mode, 206

v
vacuum fluctuations, 183
vector potential, 14

w

waiting time distribution, 45
‘Wannier—Mott excitons, 119, 121
Wiener-Khinchin theorem, 187

V4
zero phonon line, 311
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